Theorem 1. (Ultrafilter Convergence Theorem) Let $\mathcal{X} = \langle X; \mathcal{T} \rangle$ be a topological space.

- (1) \mathcal{X} is compact iff for every ultrafilter \mathcal{U} on a set I and every function $f: I \to X$ there is at least one $\ell \in X$ such that $\lim_{\mathcal{U}} f = \ell$.
- (2) \mathcal{X} is Hausdorff iff for every ultrafilter \mathcal{U} on a set I and every function $f: I \to X$ there is at most one $\ell \in X$ such that $\lim_{\mathcal{U}} f = \ell$.

Proof. $[(1), \Rightarrow]$ Assume that \mathcal{X} is compact, but there is some ultrafilter \mathcal{U} on some set I and some function $f: I \to X$ with no ℓ satisfying $\lim_{\mathcal{U}} f = \ell$. Each $x \in X$ must have an open neighborhood O_x such that $f^{-1}(O_x) \notin \mathcal{U}$. By compactness, the open cover $\{O_x \mid x \in X\}$ has a finite subcover $\{\mathcal{O}_1, \ldots, \mathcal{O}_n\}$. This yields $\bigcup_{i=1}^n f^{-1}(O_i) = f^{-1}(\bigcup_{i=1}^n O_i) = I \in \mathcal{U}$. We claim that if a finite union of subsets of I lies in \mathcal{U} then at least one summand lies in \mathcal{U} . Since no set $f^{-1}(O_i)$ lies in \mathcal{U} , this claim produces a contradiction.

We prove the contrapositive of the claim just mentioned, namely that $V, W \notin \mathcal{U}$ implies $V \cup W \notin \mathcal{U}$. If $V, W \notin \mathcal{U}$, then $X \setminus V, X \setminus W \in \mathcal{U}$, hence $(X \setminus V) \cap (X \setminus W) = X \setminus (V \cup W) \in \mathcal{U}$. Therefore $V \cup W \notin \mathcal{U}$.

 $[(1), \Leftarrow]$ Choose a collection \mathcal{C} of closed subsets of \mathcal{X} with the FIP. Let I = X and let \mathcal{F} be the filter on I generated by \mathcal{C} . Let \mathcal{U} be an ultrafilter extending \mathcal{F} . Let $f: I \to X$ be the identity function. Choose ℓ so that $\lim_{\mathcal{U}} f = \ell$. Let \mathcal{N}_{ℓ} be the set of open neighborhoods of ℓ . If $O \in \mathcal{N}_{\ell}$, then $O = f^{-1}(O) \in \mathcal{U}$. This yields $\mathcal{C} \cup \mathcal{N}_{\ell} \subseteq \mathcal{U}$, showing that $\mathcal{C} \cup \mathcal{N}_{\ell}$ has the FIP. This proves that ℓ belongs to every closed set in \mathcal{C} , hence that $\ell \in \bigcap \mathcal{C}$.

 $[(2), \Rightarrow]$ Assume \mathcal{X} is Hausdorff and that $\lim_{\mathcal{U}} f = \ell$ and $\lim_{\mathcal{U}} f = m$ for appropriate \mathcal{U}, f, ℓ, m with $\ell \neq m$. Choose disjoint open neighborhoods O_{ℓ} and O_m of ℓ and m respectively. Then $f^{-1}(O_{\ell})$ and $f^{-1}(O_m)$ are disjoint sets in \mathcal{U} , a contradiction.

 $[(2), \Leftarrow]$ Now suppose that \mathcal{X} is not Hausdorff and that $\ell \neq m$ are elements of \mathcal{X} that cannot be separated by disjoint open sets. If \mathcal{N}_{ℓ} and \mathcal{N}_m are the open neighborhood systems of these two points, then $\mathcal{N}_{\ell} \cup \mathcal{N}_m$ has the FIP. Let I = X, let \mathcal{U} be an ultrafilter on Icontaining $\mathcal{N}_{\ell} \cup \mathcal{N}_m$, and let $f: I \to X$ be the identity function. Both $\lim_{\mathcal{U}} f = \ell$ and $\lim_{\mathcal{U}} f = m$ hold, establishing the contrapositive of (2), \Leftarrow .