
Ultrafilters.

Definition 1. A filter on I is a nonempty set F ⊆ P(I) such that

(1) F is closed under finite intersection, and
(2) F is closed under the formation of supersets (if U ∈ F and U ⊆ V , then V ∈ F).

F is improper if F = P(I) and is trivial if F = {I}.

It follows from Definition 1 (2) that F is improper iff ∅ ∈ F .

Lemma 2. The set of (proper) filters on I is closed under intersection and unions of directed
families.

Proof. The fact that filters are defined by closure properties guarantees that the set of
(proper) filters on I is closed under intersection.

Let (Fλ)λ∈Λ be a Λ-directed family of filters on I. If U1, . . . , Uk ∈
⋃
Fλ, then these sets

belong to Fµ for some µ. But then

U1 ∩ · · · ∩ Uk ∈ Fµ ⊆
⋃
Fλ.

Now suppose that U ∈
⋃
Fλ and U ⊆ V . Then U ∈ Fµ for some µ and therefore V ∈ Fµ ⊆⋃

Fλ. This shows that the union of a directed family of filters is a filter.
If
⋃
Fλ is improper, then it contains ∅. It must be that ∅ ∈ Fµ for some µ, and this Fµ

is also improper. �

For any set S ⊆ P(I) there is a least filter containing S, namely the intersection of all
filters containing S. This filter is called the filter generated by S and denoted 〈S〉.

Lemma 3. If S ⊆ P(I), then TFAE.

(1) U ∈ 〈S〉.
(2) U contains a finite intersection of elements of S.

Proof. [(1)⇒(2)] The set of all those sets which contain a finite intersection of elements of
S is a filter containing S.

[(2)⇒(1)] Any filter containing S must contain every set that contains a finite intersection
of elements of S by Definition 1 (1) and (2). �

Definition 4. S ⊆ P(I) has the finite intersection property (FIP) if any finite inter-
section of elements of S is nonempty.

Hence S has the finite intersection property iff 〈S〉 is proper.

Definition 5. A proper filter F on I is an ultrafilter if for every U ⊆ I either U ∈ F or
I \ U ∈ F .

Lemma 6. (1) A filter F on I is maximal under inclusion among proper filters on I iff
it is an ultrafilter.

(2) (Ultrafilter Lemma) Every proper filter on I can be extended to an ultrafilter.
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(3) (Strengthening of (2)) Every proper filter on I is the intersection of the ultrafilters
that extend it.

Proof. [Proof of (1)] Assume F is a maximal filter. If U /∈ F , then 〈F ∪ {U}〉 is improper,
hence contains ∅. By Lemma 3, there is some V ∈ F such that ∅ = U ∩V . Replacing V by a
supserset if necessary we may assume that V = I \U . Hence U /∈ F implies that I \U ∈ F ,
showing that maximal filters are ultrafilters.

For the other direction in (1), observe that any proper extension of an ultrafilter must
contain some set and its complement, hence must contain ∅. Thus ultrafilters are maximal.

[Proof of (2)] If F is a filter satisfying ∅ /∈ F , then Zorn’s Lemma guarantees that F can
be extended to a filter F ′ that is maximal for ∅ /∈ F ′. (This uses the first part of Lemma 2.)
By (1), any filter maximal for ∅ /∈ F ′ is an ultrafilter.

[Proof of (3)] Suppose that F is proper and U /∈ F . By repeating the argument from the
first paragraph of part (1) we see that F ′ := 〈F ∪ {I \ U}〉 is a proper filter. Extend F ′ to
an ultrafilter U using part (2). Since U must contain I \U it cannot contain U . This shows
that whenever U /∈ F there is an ultrafilter U extending F satisfying U /∈ U . Hence the
intersection of the ultrafilters containing F is a filter containing F which contains no sets
not in F , i.e. F =

⋂
U⊇F U �


