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An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and

P C A is a subset of parameters, then a type over P is an Lp-type. A type
over P of a in A is the type of a in A p in the language Lp. Write tp, (a/P)
or tp(a/P).
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@ Every partial n-type can be extended to a complete n-type.

@ If a: A — A is an automorphism and a is a tuple in A, then
tpa(a) = tpy (a(a)).

@ In the ordered subset ([0, 1]; <), [0,1] C R,

tpa(0) # tpa(1/2) # tpa (1), but tpy (r) = tpy (s) whenever
0<rs<l.

@ The countable ordered subset (Q; <) has 2%°-many complete 1-types
over Q. Only countably many are realized in (Q; <).

@ For the fields Q < C, if z € C is algebraic over (Q with minimal
polynomial ming . (x), then tpc(z/Q) is ‘determined” or ‘axiomatized’
by the formula ming . (x) = 0. We say that the formula ming ,(z) = 0
supports (or isolates) the type tp.(z/Q). We call a type principal if it is
supported/isolated by a formula.
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Realizing a type

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of A, then p
can be realized in an elementary extension of A.

Proof. Let ' = Th(A). Since p is an n-type of A, the L.-theory T'U p(c) is
consistent. Let B be a model of 7" U p(c). B|;, = A and c is a realization of p
in B. Use modth3pl1 to (elementarily) jointly embed A and B into some C:
A B|;, < C.Now A < C and C realizes p. O

You can realize any set of types in an elementary extension of A with this
kind of argument.
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