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Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition.

A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).

(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a)

= tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type.

This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition.

(Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.)

If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters,

then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type.

A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP .

Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T
and a tuple a ∈ An such that A |= φ[a] for each φ(x) ∈ Σ(x).
(Σ(x) ⊆ tpA(a) = tpA(a).)

A complete n-type is a maximal partial n-type. This means that for every
formula φ(x) in the variables x = (x1, . . . , xn) we have either φ(x) ∈ Σ(x)
or ¬φ(x) ∈ Σ(x).

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else it is
omitted.

Definition. (Types over a set of parameters.) If A is an L-structure and
P ⊆ A is a subset of parameters, then a type over P is an LP -type. A type
over P of a in A is the type of a in AP in the language LP . Write tpA(a/P )
or tpA(a/P ).

Types: Review of the definitions 2 / 5



Facts and Examples

1 Every partial n-type can be extended to a complete n-type.

2 If α : A → A is an automorphism and a is a tuple in A, then
tpA(a) = tpA(α(a)).

3 In the ordered subset ⟨[0, 1]; <⟩, [0, 1] ⊆ R,
tpA(0) ̸= tpA(1/2) ̸= tpA(1), but tpA(r) = tpA(s) whenever
0 < r, s < 1.

4 The countable ordered subset ⟨Q; <⟩ has 2ℵ0-many complete 1-types
over Q. Only countably many are realized in ⟨Q; <⟩.

5 For the fields Q ≤ C, if z ∈ C is algebraic over Q with minimal
polynomial minQ,z(x), then tpC(z/Q) is ‘determined’ or ‘axiomatized’
by the formula minQ,z(x) = 0. We say that the formula minQ,z(x) = 0
supports (or isolates) the type tpC(z/Q). We call a type principal if it is
supported/isolated by a formula.
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Spaces of types

Complete types of L in the variables x correspond to complete
L ∪ {c}-theories, so we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We write Sn(T )
for the space of complete n-types of T .

More detail:

1 The points of Sn(T ) are the complete n-types of T .
2 A basic open set of Sn(T ) is a set of the form

Oφ(x) = {p ∈ Sn(T ) | φ(x) ∈ p}.

3 In this topology, a point of the space Sn(T ) is topologically isolated if
and only if it is isolated/supported in the sense of the previous slide.
Namely, a type p ∈ Sn(T ) is isolated if there is a formula φ(x) ∈ p such
that

p = {θ(x) | T |= (∀x)(φ(x) → θ(x))}.
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Realizing a type

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of A, then p
can be realized in an elementary extension of A.

Proof. Let T = Th(A). Since p is an n-type of A, the Lc-theory T ∪ p(c) is
consistent. Let B be a model of T ∪ p(c). B|L ≡ A and c is a realization of p
in B. Use modth3p1 to (elementarily) jointly embed A and B into some C:
A, B|L ≺ C. Now A ≺ C and C realizes p. 2

You can realize any set of types in an elementary extension of A with this
kind of argument.
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