Types: Review of the definitions

Definition.

Definition. A partial *n*-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \text{tp}_{\mathbf{A}}(\mathbf{a})$

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. $(\Sigma(\mathbf{x}) \subseteq \mathsf{tp}_{\mathbf{A}}(\mathbf{a}) = \mathsf{tp}^{\mathbf{A}}(\mathbf{a}).)$

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. $(\Sigma(\mathbf{x}) \subseteq \mathsf{tp}_{\mathbf{A}}(\mathbf{a}) = \mathsf{tp}^{\mathbf{A}}(\mathbf{a}).)$

A complete *n*-type is a maximal partial *n*-type.

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of A is defined to be a (p/c) *n*-type of Th(A).

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition.

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition. (Types over a set of parameters.)

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition. (Types over a set of parameters.) If **A** is an *L*-structure and $P \subseteq A$ is a subset of parameters,

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition. (Types over a set of parameters.) If **A** is an *L*-structure and $P \subseteq A$ is a subset of parameters, then a type **over** *P* is an L_P -type.

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition. (Types over a set of parameters.) If **A** is an *L*-structure and $P \subseteq A$ is a subset of parameters, then a type **over** *P* is an L_P -type. A type over *P* of **a** in **A** is the type of **a** in **A**_P in the language L_P .

Definition. A partial *n*-type of a theory *T* is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x} = (x_1, \ldots, x_n)$ such that there is a model **A** of *T* and a tuple $\mathbf{a} \in \mathbf{A}^n$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$. ($\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}^{\mathbf{A}}(\mathbf{a})$.)

A complete *n*-type is a maximal partial *n*-type. This means that for every formula $\varphi(\mathbf{x})$ in the variables $\mathbf{x} = (x_1, \ldots, x_n)$ we have either $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$ or $\neg \varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

A (p/c) *n*-type of **A** is defined to be a (p/c) *n*-type of $Th(\mathbf{A})$.

An *n*-type is **realized** in \mathbf{A} if it is the type of some *n*-tuple of \mathbf{A} , else it is **omitted**.

Definition. (Types over a set of parameters.) If **A** is an *L*-structure and $P \subseteq A$ is a subset of parameters, then a type **over** *P* is an L_P -type. A type over *P* of **a** in **A** is the type of **a** in **A**_P in the language L_P . Write $tp_{\mathbf{A}}(\mathbf{a}/P)$ or $tp^{\mathbf{A}}(\mathbf{a}/P)$.

• Every partial *n*-type can be extended to a complete *n*-type.

• Every partial *n*-type can be extended to a complete *n*-type.

- Every partial *n*-type can be extended to a complete *n*-type.
- **2** If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism

- Every partial *n*-type can be extended to a complete *n*-type.
- **2** If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism

- Every partial *n*-type can be extended to a complete *n*-type.
- **2** If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A,

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- So In the ordered subset $\langle [0,1]; \langle \rangle, [0,1] \subseteq \mathbb{R}$,

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- So In the ordered subset $\langle [0,1]; \langle \rangle, [0,1] \subseteq \mathbb{R}$,

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- $$\label{eq:constraint} \begin{split} & \textbf{O} \quad \text{In the ordered subset } \langle [0,1];<\rangle, \, [0,1]\subseteq \mathbb{R}, \\ & \operatorname{tp}_{\mathbf{A}}(0)\neq\operatorname{tp}_{\mathbf{A}}(1/2)\neq\operatorname{tp}_{\mathbf{A}}(1), \end{split}$$

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- The countable ordered subset ⟨Q; <⟩ has 2^{ℵ₀}-many complete 1-types over Q.

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- The countable ordered subset ⟨Q; <⟩ has 2^{ℵ₀}-many complete 1-types over Q.

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- Solution The countable ordered subset ⟨Q; <⟩ has 2^{ℵ0}-many complete 1-types over Q. Only countably many are realized in ⟨Q; <⟩.</p>

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- Solution The countable ordered subset ⟨Q; <⟩ has 2^{ℵ0}-many complete 1-types over Q. Only countably many are realized in ⟨Q; <⟩.</p>
- So For the fields Q ≤ C, if z ∈ C is algebraic over Q with minimal polynomial min_{Q,z}(x),

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- Solution The countable ordered subset ⟨Q; <⟩ has 2^{ℵ0}-many complete 1-types over Q. Only countably many are realized in ⟨Q; <⟩.</p>
- So For the fields Q ≤ C, if z ∈ C is algebraic over Q with minimal polynomial min_{Q,z}(x),

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- Solution The countable ordered subset ⟨Q; <⟩ has 2^{ℵ0}-many complete 1-types over Q. Only countably many are realized in ⟨Q; <⟩.</p>
- For the fields Q ≤ C, if z ∈ C is algebraic over Q with minimal polynomial min_{Q,z}(x), then tp_C(z/Q) is 'determined' or 'axiomatized' by the formula min_{Q,z}(x) = 0.

- Every partial *n*-type can be extended to a complete *n*-type.
- If $\alpha : \mathbf{A} \to \mathbf{A}$ is an automorphism and \mathbf{a} is a tuple in A, then $\operatorname{tp}_{\mathbf{A}}(\mathbf{a}) = \operatorname{tp}_{\mathbf{A}}(\alpha(\mathbf{a})).$
- In the ordered subset $\langle [0,1]; < \rangle$, $[0,1] \subseteq \mathbb{R}$, $tp_{\mathbf{A}}(0) \neq tp_{\mathbf{A}}(1/2) \neq tp_{\mathbf{A}}(1)$, but $tp_{\mathbf{A}}(r) = tp_{\mathbf{A}}(s)$ whenever 0 < r, s < 1.
- Solution The countable ordered subset ⟨Q; <⟩ has 2^{ℵ0}-many complete 1-types over Q. Only countably many are realized in ⟨Q; <⟩.</p>
- For the fields Q ≤ C, if z ∈ C is algebraic over Q with minimal polynomial min_{Q,z}(x), then tp_C(z/Q) is 'determined' or 'axiomatized' by the formula min_{Q,z}(x) = 0. We say that the formula min_{Q,z}(x) = 0 supports (or isolates) the type tp_C(z/Q). We call a type principal if it is supported/isolated by a formula.

Complete types of L in the variables x correspond to complete $L \cup \{c\}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types.

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup \{\mathbf{c}\}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

• The points of $S_n(T)$ are the complete *n*-types of *T*.

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup \{\mathbf{c}\}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

• The points of $S_n(T)$ are the complete *n*-types of *T*.

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

- The points of $S_n(T)$ are the complete *n*-types of *T*.
- 2 A basic open set of $S_n(T)$ is a set of the form

$$O_{\varphi(\mathbf{x})} = \{ p \in S_n(T) \mid \varphi(\mathbf{x}) \in p \}.$$

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

- The points of $S_n(T)$ are the complete *n*-types of *T*.
- 2 A basic open set of $S_n(T)$ is a set of the form

$$O_{\varphi(\mathbf{x})} = \{ p \in S_n(T) \mid \varphi(\mathbf{x}) \in p \}.$$

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

- The points of $S_n(T)$ are the complete *n*-types of *T*.
- **2** A basic open set of $S_n(T)$ is a set of the form

$$O_{\varphi(\mathbf{x})} = \{ p \in S_n(T) \mid \varphi(\mathbf{x}) \in p \}.$$

3 In this topology, a point of the space $S_n(T)$ is topologically isolated if and only if it is isolated/supported in the sense of the previous slide.

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

- The points of $S_n(T)$ are the complete *n*-types of *T*.
- **2** A basic open set of $S_n(T)$ is a set of the form

$$O_{\varphi(\mathbf{x})} = \{ p \in S_n(T) \mid \varphi(\mathbf{x}) \in p \}.$$

3 In this topology, a point of the space $S_n(T)$ is topologically isolated if and only if it is isolated/supported in the sense of the previous slide.

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

- The points of $S_n(T)$ are the complete *n*-types of *T*.
- **2** A basic open set of $S_n(T)$ is a set of the form

$$O_{\varphi(\mathbf{x})} = \{ p \in S_n(T) \mid \varphi(\mathbf{x}) \in p \}.$$

In this topology, a point of the space S_n(T) is topologically isolated if and only if it is isolated/supported in the sense of the previous slide. Namely, a type p ∈ S_n(T) is isolated if there is a formula φ(**x**) ∈ p such that

Complete types of L in the variables \mathbf{x} correspond to complete $L \cup {\mathbf{c}}$ -theories, so we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We write $S_n(T)$ for the space of complete *n*-types of T.

More detail:

- The points of $S_n(T)$ are the complete *n*-types of *T*.
- **2** A basic open set of $S_n(T)$ is a set of the form

$$O_{\varphi(\mathbf{x})} = \{ p \in S_n(T) \mid \varphi(\mathbf{x}) \in p \}.$$

In this topology, a point of the space S_n(T) is topologically isolated if and only if it is isolated/supported in the sense of the previous slide. Namely, a type p ∈ S_n(T) is isolated if there is a formula φ(**x**) ∈ p such that

$$p = \{\theta(\mathbf{x}) \mid T \models (\forall x)(\varphi(\mathbf{x}) \to \theta(\mathbf{x}))\}.$$

(A version of) Proposition 4.1.3 of Marker.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} ,

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$ and \mathbf{c} is a realization of p in \mathbf{B} .

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$ and \mathbf{c} is a realization of p in \mathbf{B} . Use modth3p1

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$ and \mathbf{c} is a realization of p in \mathbf{B} . Use modth3p1 to (elementarily) jointly embed \mathbf{A} and \mathbf{B} into some \mathbf{C} : $\mathbf{A}, \mathbf{B}|_{L} \prec \mathbf{C}$.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$ and \mathbf{c} is a realization of p in \mathbf{B} . Use modth3p1 to (elementarily) jointly embed \mathbf{A} and \mathbf{B} into some \mathbf{C} : $\mathbf{A}, \mathbf{B}|_{L} \prec \mathbf{C}$. Now $\mathbf{A} \prec \mathbf{C}$ and \mathbf{C} realizes p.

(A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$ and \mathbf{c} is a realization of p in \mathbf{B} . Use modth3p1 to (elementarily) jointly embed \mathbf{A} and \mathbf{B} into some \mathbf{C} : $\mathbf{A}, \mathbf{B}|_{L} \prec \mathbf{C}$. Now $\mathbf{A} \prec \mathbf{C}$ and \mathbf{C} realizes p. \Box (A version of) Proposition 4.1.3 of Marker. If p is an n-type of \mathbf{A} , then p can be realized in an elementary extension of \mathbf{A} .

Proof. Let $T = \text{Th}(\mathbf{A})$. Since p is an n-type of \mathbf{A} , the $L_{\mathbf{c}}$ -theory $T \cup p(\mathbf{c})$ is consistent. Let \mathbf{B} be a model of $T \cup p(\mathbf{c})$. $\mathbf{B}|_{L} \equiv \mathbf{A}$ and \mathbf{c} is a realization of p in \mathbf{B} . Use modth3p1 to (elementarily) jointly embed \mathbf{A} and \mathbf{B} into some \mathbf{C} : $\mathbf{A}, \mathbf{B}|_{L} \prec \mathbf{C}$. Now $\mathbf{A} \prec \mathbf{C}$ and \mathbf{C} realizes p. \Box

You can realize any set of types in an elementary extension of \mathbf{A} with this kind of argument.