The complete 1-types of the theory $\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$

DLO = dense linear order without endpoints

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}$,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q$,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q$,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}(\mathbb{Q} \mathbb{Q})$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 p 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$
T \models\left(\forall x_{1}\right)\left(\left(x_{1}<q\right) \vee\left(x_{1}=q\right) \vee\left(q<x_{1}\right)\right) .
$$

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$, $x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$
T \models\left(\forall x_{1}\right)\left(\left(x_{1}<q\right) \vee\left(x_{1}=q\right) \vee\left(q<x_{1}\right)\right) .
$$

Since T extends the theory of total order,

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$,
$x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$
T \models\left(\forall x_{1}\right)\left(\left(x_{1}<q\right) \vee\left(x_{1}=q\right) \vee\left(q<x_{1}\right)\right) .
$$

Since T extends the theory of total order, each type p contains exactly one of the formulas $x_{1}<q, \quad x_{1}=q, \quad q<x_{1}$ for each $q \in \mathbb{Q}$.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$,
$x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$
T \models\left(\forall x_{1}\right)\left(\left(x_{1}<q\right) \vee\left(x_{1}=q\right) \vee\left(q<x_{1}\right)\right) .
$$

Since T extends the theory of total order, each type p contains exactly one of the formulas $x_{1}<q, \quad x_{1}=q, \quad q<x_{1}$ for each $q \in \mathbb{Q}$.
From this, it can be derived that any complete 1-type $p\left(x_{1}\right)=p \in S_{1}(T)$ is determined by which formulas of the forms $x_{1}<q, x_{1}=q, \quad q<x_{1}, q \in \mathbb{Q}$, that it contains.

DLO = dense linear order without endpoints

Since DLO is \aleph_{0}-categorical, and $\mathbb{Q}=\langle\mathbb{Q} ;<\rangle$ is a countable model, $\mathrm{DLO}=\operatorname{Th}(\mathbb{Q})$.
DLO has q.e.
Hence $T=\operatorname{Th}\left(\mathbb{Q}_{\mathbb{Q}}\right)$ has q.e. $(\bmod 3 \mathrm{p} 2)$
Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_{1}=x_{1}, x_{1}=q, q=q^{\prime}$,
$x_{1}<q, q<x_{1}$, or $q<q^{\prime}$, for some $q, q^{\prime} \in \mathbb{Q}$.
Every complete 1-type $p \in S_{1}(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$
T \models\left(\forall x_{1}\right)\left(\left(x_{1}<q\right) \vee\left(x_{1}=q\right) \vee\left(q<x_{1}\right)\right) .
$$

Since T extends the theory of total order, each type p contains exactly one of the formulas $x_{1}<q, \quad x_{1}=q, \quad q<x_{1}$ for each $q \in \mathbb{Q}$.
From this, it can be derived that any complete 1-type $p\left(x_{1}\right)=p \in S_{1}(T)$ is determined by which formulas of the forms $x_{1}<q, x_{1}=q, \quad q<x_{1}, q \in \mathbb{Q}$, that it contains.

Points of $S_{1}(T)$

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\}$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$.

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(0) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(0) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and $P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(0) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:

- $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\emptyset, \mathbb{Q})$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\emptyset, \mathbb{Q})$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\emptyset, \mathbb{Q})$,

These points inherit a total order,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\emptyset, \mathbb{Q})$,

These points inherit a total order, $C=\left\langle S_{1}(T) ;<\right\rangle$,

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\emptyset, \mathbb{Q})$,

These points inherit a total order, $C=\left\langle S_{1}(T) ;<\right\rangle$, that looks like the extended real line $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$, with each rational point tripled:

Points of $S_{1}(T)$

Given $p \in S_{1}(T)$, let $P_{\downarrow}=\left\{q \in \mathbb{Q} \mid\left(q<x_{1}\right) \in p\right\}$ and
$P^{\uparrow}=\left\{q \in \mathbb{Q} \mid\left(x_{1}<q\right) \in p\right\},\left(P_{\downarrow}, P^{\uparrow}\right)$ is a "cut" in $\langle\mathbb{Q} ;<\rangle$. Possibilities:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is an irrational cut: $\exists \rho \in \mathbb{R}-\mathbb{Q}$ such that $P_{\downarrow}=(-\infty, \rho)$, $P^{\uparrow}=(\rho, \infty)$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a rational cut:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),[q, \infty))$,
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q),(q, \infty))$,
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)=((-\infty, q],(q, \infty))$.

In the middle case, $\left(x_{1}=q\right) \in p$, and this formula isolates p.
(3) $\left(P_{\downarrow}, P^{\uparrow}\right)$ is a cut at \pm infinity:
(1) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\mathbb{Q}, \emptyset)$, or
(2) $\left(P_{\downarrow}, P^{\uparrow}\right)=(\emptyset, \mathbb{Q})$,

These points inherit a total order, $C=\left\langle S_{1}(T) ;<\right\rangle$, that looks like the extended real line $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$, with each rational point tripled: $q \Longrightarrow q-\varepsilon<q<q+\varepsilon$.

Topology of $S_{1}(T)$

Topology of $S_{1}(T)$

The topology of $S_{1}(T)$ has a subbasis of clopen sets of the forms $O_{x_{1}<q}, \quad O_{x_{1}=q}, \quad O_{q<x_{1}}$

Topology of $S_{1}(T)$

The topology of $S_{1}(T)$ has a subbasis of clopen sets of the forms $O_{x_{1}<q}, O_{x_{1}=q}, O_{q<x_{1}}$ and the complements of these sets.

Topology of $S_{1}(T)$

The topology of $S_{1}(T)$ has a subbasis of clopen sets of the forms $O_{x_{1}<q}, O_{x_{1}=q}, O_{q<x_{1}}$ and the complements of these sets.

This topology turns out to be the same as the order topology on $C=\left\langle S_{1}(T) ;<\right\rangle$.

Observations

Observations

- $\left|S_{1}(T)\right|=2^{\aleph_{0}}$.

Observations

- $\left|S_{1}(T)\right|=2^{\aleph_{0}}$.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by
(i) a specification of the associated pair of 1-types, $\left(\left.p\right|_{x_{1}},\left.p\right|_{x_{2}}\right)=(r, s) \in C^{2}$, and

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by
(i) a specification of the associated pair of 1-types,
$\left(\left.p\right|_{x_{1}},\left.p\right|_{x_{2}}\right)=(r, s) \in C^{2}$, and
(ii) a specification of which formula $x_{1}<x_{2}, x_{1}=x_{2}, x_{2}<x_{1}$ belongs to p in the case where $r=s$ and $r \notin \mathbb{Q}$.

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by
(i) a specification of the associated pair of 1-types,
$\left(\left.p\right|_{x_{1}},\left.p\right|_{x_{2}}\right)=(r, s) \in C^{2}$, and
(ii) a specification of which formula $x_{1}<x_{2}, x_{1}=x_{2}, x_{2}<x_{1}$ belongs to p in the case where $r=s$ and $r \notin \mathbb{Q}$.
(6) The model $\mathbb{Q}_{\mathbb{Q}}$ of T realizes only isolated types,

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by
(i) a specification of the associated pair of 1-types,
$\left(\left.p\right|_{x_{1}},\left.p\right|_{x_{2}}\right)=(r, s) \in C^{2}$, and
(ii) a specification of which formula $x_{1}<x_{2}, x_{1}=x_{2}, x_{2}<x_{1}$ belongs to p in the case where $r=s$ and $r \notin \mathbb{Q}$.
(6) The model $\mathbb{Q}_{\mathbb{Q}}$ of T realizes only isolated types,

Observations

(1) $\left|S_{1}(T)\right|=2^{\aleph_{0}}$. (This is enough to imply that T has $2^{\aleph_{0}}$ isomorphism types of countable models.)
(2) The isolated types are those isolated by formulas of the form $x_{1}=q$, $q \in \mathbb{Q}$. These are the types of rational numbers.
(3) The isolated types are dense in $S_{1}(T)$.
(9) A similar analysis shows that a complete 2-type $p=p\left(x_{1}, x_{2}\right)$ is determined by
(i) a specification of the associated pair of 1-types,
$\left(\left.p\right|_{x_{1}},\left.p\right|_{x_{2}}\right)=(r, s) \in C^{2}$, and
(ii) a specification of which formula $x_{1}<x_{2}, x_{1}=x_{2}, x_{2}<x_{1}$ belongs to p in the case where $r=s$ and $r \notin \mathbb{Q}$.
(3) The model $\mathbb{Q}_{\mathbb{Q}}$ of T realizes only isolated types, and it is the unique isomorphism type of model of T that realizes only isolated types.

