The complete 1-types of the theory $Th(\mathbb{Q}_{\mathbb{Q}})$

Since DLO is \aleph_0 -categorical,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; < \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; < \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e.

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; < \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q',

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q',

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms.

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$T \models (\forall x_1)((x_1 < q) \lor (x_1 = q) \lor (q < x_1)).$$

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$T \models (\forall x_1)((x_1 < q) \lor (x_1 = q) \lor (q < x_1)).$$

Since T extends the theory of total order,

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$T \models (\forall x_1)((x_1 < q) \lor (x_1 = q) \lor (q < x_1)).$$

Since T extends the theory of total order, each type p contains exactly one of the formulas $x_1 < q$, $x_1 = q$, $q < x_1$ for each $q \in \mathbb{Q}$.

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$T \models (\forall x_1)((x_1 < q) \lor (x_1 = q) \lor (q < x_1)).$$

Since T extends the theory of total order, each type p contains exactly one of the formulas $x_1 < q$, $x_1 = q$, $q < x_1$ for each $q \in \mathbb{Q}$.

From this, it can be derived that any complete 1-type $p(x_1) = p \in S_1(T)$ is determined by which formulas of the forms $x_1 < q$, $x_1 = q$, $q < x_1, q \in \mathbb{Q}$, that it contains.

Since DLO is \aleph_0 -categorical, and $\mathbb{Q} = \langle \mathbb{Q}; \langle \rangle$ is a countable model, DLO = Th(\mathbb{Q}).

DLO has q.e.

Hence $T = \text{Th}(\mathbb{Q}_{\mathbb{Q}})$ has q.e. (mod3p2)

Hence every formula in at most one free variable is logically equivalent to a Boolean combination of the atomic formulas $x_1 = x_1$, $x_1 = q$, q = q', $x_1 < q$, $q < x_1$, or q < q', for some $q, q' \in \mathbb{Q}$.

Every complete 1-type $p \in S_1(T)$ will be determined by the formulas it contains which have one of these forms. Moreover, for each $q \in \mathbb{Q}$

$$T \models (\forall x_1)((x_1 < q) \lor (x_1 = q) \lor (q < x_1)).$$

Since T extends the theory of total order, each type p contains exactly one of the formulas $x_1 < q$, $x_1 = q$, $q < x_1$ for each $q \in \mathbb{Q}$.

From this, it can be derived that any complete 1-type $p(x_1) = p \in S_1(T)$ is determined by which formulas of the forms $x_1 < q$, $x_1 = q$, $q < x_1, q \in \mathbb{Q}$, that it contains.

Given $p \in S_1(T)$,

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\},\$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; < \rangle$.

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

• $(P_{\downarrow}, P^{\uparrow})$ is an irrational cut:

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

• $(P_{\downarrow}, P^{\uparrow})$ is an irrational cut:

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; < \rangle$. Possibilities:

• $(P_{\downarrow}, P^{\uparrow})$ is an irrational cut: $\exists \rho \in \mathbb{R} - \mathbb{Q}$ such that

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

 $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} - \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

 $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} - \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- $\textcircled{O} (P_{\downarrow}, P^{\uparrow}) \text{ is a rational cut:}$
- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- $\textcircled{0}(P_{\downarrow},P^{\uparrow}) \text{ is a rational cut:}$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:

 $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:

 $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P_{\downarrow}^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P_{\downarrow}^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow},P^{\uparrow})=((-\infty,q],(q,\infty)).$

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow},P^{\uparrow})=((-\infty,q],(q,\infty)).$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$,

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P_{\downarrow}^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow},P^{\uparrow})=((-\infty,q],(q,\infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

(P_{\downarrow}, P^{\uparrow}) is a cut at ±infinity:

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

(P_{\downarrow}, P^{\uparrow}) is a cut at ±infinity:

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$ $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

(P_{\downarrow}, P^{\uparrow}) is a cut at ±infinity:

$$(P_{\downarrow}, P^{\uparrow}) = (\mathbb{Q}, \emptyset), \text{ or }$$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(I_{\downarrow}, I^{\uparrow}) = ((-\infty, q), (q, \infty)),$ $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

(P_{\downarrow}, P^{\uparrow}) is a cut at ±infinity:

$$(P_{\downarrow}, P^{\uparrow}) = (\mathbb{Q}, \emptyset), \text{ or }$$

 $(P_{\downarrow}, P^{\uparrow}) = (\emptyset, \mathbb{Q}),$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(I_{\downarrow}, I^{\uparrow}) = ((-\infty, q), (q, \infty)),$ $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

(P_{\downarrow}, P^{\uparrow}) is a cut at ±infinity:

$$(P_{\downarrow}, P^{\uparrow}) = (\mathbb{Q}, \emptyset), \text{ or }$$

 $(P_{\downarrow}, P^{\uparrow}) = (\emptyset, \mathbb{Q}),$

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$ $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

- (2) $(P_{\downarrow}, P^{\uparrow})$ is a cut at ±infinity:
 - $(P_{\downarrow}, P^{\uparrow}) = (\mathbb{Q}, \emptyset), \text{ or }$ $(P_{\downarrow}, P^{\uparrow}) = (\emptyset, \mathbb{Q}),$

These points inherit a total order,

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

- (2) $(P_{\downarrow}, P^{\uparrow})$ is a cut at ±infinity:
 - $(P_{\downarrow}, P^{\uparrow}) = (\mathbb{Q}, \emptyset)$, or • $(P_{\downarrow}, P^{\uparrow}) = (\emptyset, \mathbb{Q})$,

These points inherit a total order, $C = \langle S_1(T); \langle \rangle$,

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)),$ $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

($P_{\downarrow}, P^{\uparrow}$) is a cut at ±infinity: ($P_{\downarrow}, P^{\uparrow}$) = (\mathbb{O}, \emptyset), or

$$(P_{\downarrow}, P^{\uparrow}) = (\mathbb{Q}, \emptyset), o$$

$$(P_{\downarrow}, P^{\uparrow}) = (\emptyset, \mathbb{Q}),$$

These points inherit a total order, $C = \langle S_1(T); \langle \rangle$, that looks like the extended real line $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$, with each rational point tripled:

Given $p \in S_1(T)$, let $P_{\downarrow} = \{q \in \mathbb{Q} \mid (q < x_1) \in p\}$ and $P^{\uparrow} = \{q \in \mathbb{Q} \mid (x_1 < q) \in p\}, (P_{\downarrow}, P^{\uparrow})$ is a "cut" in $\langle \mathbb{Q}; \langle \rangle$. Possibilities:

- $\begin{array}{l} \bullet \quad (P_{\downarrow},P^{\uparrow}) \text{ is an irrational cut: } \exists \rho \in \mathbb{R} \mathbb{Q} \text{ such that } P_{\downarrow} = (-\infty,\rho), \\ P^{\uparrow} = (\rho,\infty), \end{array}$
- **2** $(P_{\downarrow}, P^{\uparrow})$ is a rational cut:
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), [q, \infty)),$ • $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q), (q, \infty)),$
 - $(P_{\downarrow}, P^{\uparrow}) = ((-\infty, q], (q, \infty)).$

In the middle case, $(x_1 = q) \in p$, and this formula isolates p.

(P_{\downarrow}, P^{\uparrow}) is a cut at ±infinity:

$$\begin{array}{l} (P_{\downarrow},P^{\uparrow})=(\mathbb{Q},\emptyset), \text{ or}\\ (P_{\downarrow},P^{\uparrow})=(\emptyset,\mathbb{Q}), \end{array}$$

These points inherit a total order, $C = \langle S_1(T); \langle \rangle$, that looks like the extended real line $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$, with each rational point tripled: $a \implies a - \varepsilon \langle q \langle q + \varepsilon \rangle$.

The topology of $S_1(T)$ has a subbasis of clopen sets of the forms $O_{x_1 < q}, \ O_{x_1 = q}, \ O_{q < x_1}$

The topology of $S_1(T)$ has a subbasis of clopen sets of the forms $O_{x_1 < q}$, $O_{x_1 = q}$, $O_{q < x_1}$ and the complements of these sets.

The topology of $S_1(T)$ has a subbasis of clopen sets of the forms $O_{x_1 < q}$, $O_{x_1 = q}$, $O_{q < x_1}$ and the complements of these sets.

This topology turns out to be the same as the order topology on $C = \langle S_1(T); < \rangle$.

•
$$|S_1(T)| = 2^{\aleph_0}$$
.

•
$$|S_1(T)| = 2^{\aleph_0}$$
.

• $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- On The isolated types are those isolated by formulas of the form x₁ = q, q ∈ Q.

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- On The isolated types are those isolated by formulas of the form x₁ = q, q ∈ Q.

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- On The isolated types are those isolated by formulas of the form x₁ = q, q ∈ Q. These are the types of rational numbers.

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.
- A similar analysis shows that a complete 2-type $p = p(x_1, x_2)$ is determined by

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.
- A similar analysis shows that a complete 2-type $p = p(x_1, x_2)$ is determined by

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

A similar analysis shows that a complete 2-type p = p(x1, x2) is determined by
 (i) a specification of the associated pair of 1-types,

 $(p|_{x_1}, p|_{x_2}) = (r, s) \in C^2$, and

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

• A similar analysis shows that a complete 2-type $p = p(x_1, x_2)$ is determined by

(i) a specification of the associated pair of 1-types,

 $(p|_{x_1}, p|_{x_2}) = (r, s) \in C^2$, and

(ii) a specification of which formula $x_1 < x_2, x_1 = x_2, x_2 < x_1$ belongs to p in the case where r = s and $r \notin \mathbb{Q}$.

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- On The isolated types are those isolated by formulas of the form x₁ = q, q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

• A similar analysis shows that a complete 2-type $p = p(x_1, x_2)$ is determined by

(i) a specification of the associated pair of 1-types, $(p|_{x_1}, p|_{x_2}) = (r, s) \in C^2$, and (ii) a specification of which formula $x_1 < x_2, x_1 = x_2, x_2 < x_1$ belongs to p in the case where r = s and $r \notin \mathbb{Q}$.

Solution The model $\mathbb{Q}_{\mathbb{Q}}$ of T realizes only isolated types,
- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

• A similar analysis shows that a complete 2-type $p = p(x_1, x_2)$ is determined by

(i) a specification of the associated pair of 1-types, $(p|_{x_1}, p|_{x_2}) = (r, s) \in C^2$, and (ii) a specification of which formula $x_1 < x_2, x_1 = x_2, x_2 < x_1$ belongs to p in the case where r = s and $r \notin \mathbb{Q}$.

Solution The model $\mathbb{Q}_{\mathbb{Q}}$ of T realizes only isolated types,

- $|S_1(T)| = 2^{\aleph_0}$. (This is enough to imply that T has 2^{\aleph_0} isomorphism types of countable models.)
- Provide the types are those isolated by formulas of the form x₁ = q,
 q ∈ Q. These are the types of rational numbers.
- The isolated types are dense in $S_1(T)$.

• A similar analysis shows that a complete 2-type $p = p(x_1, x_2)$ is determined by

(i) a specification of the associated pair of 1-types, $(p|_{x_1}, p|_{x_2}) = (r, s) \in C^2$, and (ii) a specification of which formula $x_1 < x_2, x_1 = x_2, x_2 < x_1$ belongs to p in the case where r = s and $r \notin \mathbb{Q}$.

So The model Q_Q of T realizes only isolated types, and it is the unique isomorphism type of model of T that realizes only isolated types.