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@ (P, P")is an irrational cut: 3p € R — Q such that P, = (—o0, p),
P" = (p, 00),
@ (P, P")is arational cut:
o (Pl7 PT) = ((_Oovq)a [q> OO)),
@ (P, P") = ((~00,q),(q,0)),
@ (P, P") = ((~00,q],(g,0)).
In the middle case, (1 = ¢) € p, and this formula isolates p.
@ (P, P")isacut at +infinity:
(1] (PL7PT) = (Qa®)7 or
@ (P, Ph)=(0,Q),
These points inherit a total order, C' = (S1(T'); <), that looks like the
extended real line R = R U {+oc}, with each rational point tripled:
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Points of S1(7)

Givenp € S1(T),let P, ={q€ Q| (¢ < z1) € p} and
P'={q€ Q]| (z1 < q) €p}, (P, Pl)isa“cut” in (Q; <). Possibilities:

@ (P, P")is an irrational cut: 3p € R — Q such that P, = (—o0, p),
Pt = (p, 00),
@ (P, P")is arational cut:
o (Pl7 PT) = ((_Oovq)a [q> OO)),
@ (P, P") = ((~00,q),(q,0)),
@ (P, P") = ((~00,q],(g,0)).
In the middle case, (1 = ¢) € p, and this formula isolates p.
@ (P, P")isacut at +infinity:
o (PL7PT) = (Qa®)7 or
@ (P, Ph)=(0,Q),
These points inherit a total order, C' = (S1(T'); <), that looks like the
extended real line R = R U {+oc}, with each rational point tripled:
q — q—e<qg<gq-+te.
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Topology of S1(T)
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Topology of S1(T)

The topology of S1(7") has a subbasis of clopen sets of the forms
Ozl <q> Omlzqa Oq<1‘1
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Topology of S1(T)

The topology of S1(7") has a subbasis of clopen sets of the forms
Oz,<q> Oz1=¢: Og<q, and the complements of these sets.
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Topology of S1(T)
The topology of S1(7") has a subbasis of clopen sets of the forms
Oz,<q> Oz1=¢: Og<q, and the complements of these sets.

This topology turns out to be the same as the order topology on

C = (51(T); <).
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Q [51(T)] = 2%.
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@ [S1(T)| = 2%0. (This is enough to imply that 7 has 2% isomorphism
types of countable models.)
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© The isolated types are those isolated by formulas of the form x; = ¢,

q € Q.
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types of countable models.)
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@ The isolated types are dense in Sy (7).
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types of countable models.)

© The isolated types are those isolated by formulas of the form x; = ¢,
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@ The isolated types are dense in Sy (7).

@ A similar analysis shows that a complete 2-type p = p(1, z2) is
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Observations

@ [S1(T)| = 2%0. (This is enough to imply that 7 has 2% isomorphism
types of countable models.)

© The isolated types are those isolated by formulas of the form x; = ¢,
q € Q. These are the types of rational numbers.

@ The isolated types are dense in Sy (7).

@ A similar analysis shows that a complete 2-type p = p(1, z2) is
determined by
(i) a specification of the associated pair of 1-types,
(Play; Play) = (r;5) € C?, and

The complete 1-types of the theory Th(Qgq)



Observations

@ [S1(T)| = 2%0. (This is enough to imply that 7 has 2% isomorphism
types of countable models.)

© The isolated types are those isolated by formulas of the form x; = ¢,
q € Q. These are the types of rational numbers.

@ The isolated types are dense in Sy (7).

@ A similar analysis shows that a complete 2-type p = p(1, z2) is
determined by
(i) a specification of the associated pair of 1-types,
(Play: Plas) = (r,5) € C2, and
(ii) a specification of which formula z; < z9, 1 = x3, 2 < x1 belongs
to p in the case where r = s and r ¢ Q.
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@ [S1(T)| = 2%0. (This is enough to imply that 7 has 2% isomorphism
types of countable models.)

© The isolated types are those isolated by formulas of the form x; = ¢,
q € Q. These are the types of rational numbers.

@ The isolated types are dense in Sy (7).

@ A similar analysis shows that a complete 2-type p = p(1, z2) is
determined by
(i) a specification of the associated pair of 1-types,
(Play: Plas) = (r,5) € C2, and
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Observations

o

2]

©

|S1(T)| = 2%0. (This is enough to imply that 7" has 2%° isomorphism
types of countable models.)

The isolated types are those isolated by formulas of the form z; = g,
q € Q. These are the types of rational numbers.

The isolated types are dense in S1 (7).

A similar analysis shows that a complete 2-type p = p(x1, z2) is
determined by

(i) a specification of the associated pair of 1-types,

(Play: Plas) = (r,5) € C2, and

(ii) a specification of which formula z; < z9, 1 = x3, 2 < x1 belongs
to p in the case where r = s and r ¢ Q.

The model Qg of T realizes only isolated types, and it is the unique
isomorphism type of model of 7' that realizes only isolated types.

The complete 1-types of the theory Th(Qgq)



