Omitting Types

 omit one." -from Saturated Model Theory, G. Sacks

"Any fool can realize a type, but it takes a model theorist to omit one." -from Saturated Model Theory, G. Sacks

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ.

"Any fool can realize a type, but it takes a model theorist to omit one." -from Saturated Model Theory, G. Sacks

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ.

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

"Any fool can realize a type, but it takes a model theorist to omit one." -from Saturated Model Theory, G. Sacks

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ.

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

As the construction progresses, for each $p \in \Phi$,

"Any fool can realize a type, but it takes a model theorist to omit one." -from Saturated Model Theory, G. Sacks

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ.

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

As the construction progresses, for each $p \in \Phi$, ensure that for every tuple \mathbf{c} of constants, $\neg \varphi(\mathbf{c})$ is added to T_{∞} for some formula with $\varphi(\mathbf{x}) \in p$.

"Any fool can realize a type, but it takes a model theorist to omit one." -from Saturated Model Theory, G. Sacks

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ.

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

As the construction progresses, for each $p \in \Phi$, ensure that for every tuple \mathbf{c} of constants, $\neg \varphi(\mathbf{c})$ is added to T_{∞} for some formula with $\varphi(\mathbf{x}) \in p$.

The Henkin model cannot realize any type in Φ, because we forced that.

Organization of proof for $\Phi=\{p\}$ a single n-type

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$.
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$.
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$.
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.. Goals:
(1) $T \cup\left\{\theta_{i} \mid i \in \omega\right\}$ is a Henkin L_{∞}-theory.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$.
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.. Goals:
(1) $T \cup\left\{\theta_{i} \mid i \in \omega\right\}$ is a Henkin L_{∞}-theory.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.. Goals:
(1) $T \cup\left\{\theta_{i} \mid i \in \omega\right\}$ is a Henkin L_{∞}-theory.
(2) The Henkin model omits p.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.. Goals:
(1) $T \cup\left\{\theta_{i} \mid i \in \omega\right\}$ is a Henkin L_{∞}-theory.
(2) The Henkin model omits p.

Organization of proof for $\Phi=\{p\}$ a single n-type

(1) Let L_{∞} be the language obtained from L by adding countably many new constant symbols.
(2) Enumerate with ω all L_{∞}-sentences: $\sigma_{0}, \sigma_{1}, \ldots$..
(3) Enumerate with ω all n-tuples of constant symbols $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots$.
(9) Construct a sequence of increasingly stronger L_{∞}-sentences $\theta_{0}, \theta_{1}, \ldots$.. Goals:
(1) $T \cup\left\{\theta_{i} \mid i \in \omega\right\}$ is a Henkin L_{∞}-theory.
(2) The Henkin model omits p.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$,

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$,

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Assume that σ_{k} is $(\exists x) \varphi(x)$ where $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is consistent.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Assume that σ_{k} is $(\exists x) \varphi(x)$ where $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is consistent. Choose a constant c that does not appear in $T \cup\left\{\theta_{i}\right\}$.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Assume that σ_{k} is $(\exists x) \varphi(x)$ where $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is consistent.
Choose a constant c that does not appear in $T \cup\left\{\theta_{i}\right\}$.
Let $\theta_{i+1}=\theta_{i} \wedge \varphi(c)$.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Assume that σ_{k} is $(\exists x) \varphi(x)$ where $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is consistent.
Choose a constant c that does not appear in $T \cup\left\{\theta_{i}\right\}$.
Let $\theta_{i+1}=\theta_{i} \wedge \varphi(c)$.
If $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is not consistent, do nothing.

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Assume that σ_{k} is $(\exists x) \varphi(x)$ where $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is consistent.
Choose a constant c that does not appear in $T \cup\left\{\theta_{i}\right\}$.
Let $\theta_{i+1}=\theta_{i} \wedge \varphi(c)$.
If $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is not consistent, do nothing. $\left(\theta_{i+1}=\theta_{i}\right.$.)

Want T_{∞} to

(1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup\left\{\theta_{i}\right\}$.
(1) (Stage $i=3 k+1$: ensuring completeness)

Decide which of $\sigma_{k}, \neg \sigma_{k}$ to put in T_{∞} :
If $i+1=3 k+1$, and $T \cup\left\{\theta_{i}\right\} \models \sigma_{k}$, then let $\theta_{i+1}=\theta_{i} \wedge \sigma_{k}$, else let $\theta_{i+1}=\theta_{i} \wedge \neg \sigma_{k}$.
(2) (Stage $i=3 k+2$: ensuring witnesses)

Assume that σ_{k} is $(\exists x) \varphi(x)$ where $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is consistent.
Choose a constant c that does not appear in $T \cup\left\{\theta_{i}\right\}$.
Let $\theta_{i+1}=\theta_{i} \wedge \varphi(c)$.
If $T \cup\left\{\theta_{i},(\exists x) \varphi(x)\right\}$ is not consistent, do nothing. $\left(\theta_{i+1}=\theta_{i}\right.$.)

Want T_{∞} to omit p

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission)

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission)

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$. Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula,

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.
Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.
Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not \vDash(\forall \mathbf{x})(\delta(\mathbf{x}) \rightarrow \psi(\mathbf{x}))$.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$. Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not \models(\forall \mathbf{x})(\delta(\mathbf{x}) \rightarrow \psi(\mathbf{x}))$. Hence, some model M of T has a tuple \mathbf{s} realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.
Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not \models(\forall \mathbf{x})(\delta(\mathbf{x}) \rightarrow \psi(\mathbf{x}))$.
Hence, some model M of T has a tuple \mathbf{s} realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$.
Interpret $\mathbf{c}_{k}=\mathbf{s}$.

Want T_{∞} to omit p

(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered. Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.
Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not \vDash(\forall \mathbf{x})(\delta(\mathbf{x}) \rightarrow \psi(\mathbf{x}))$.
Hence, some model M of T has a tuple \mathbf{s} realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$.
Interpret $\mathbf{c}_{k}=\mathbf{s} . M \models \delta\left(\mathbf{c}_{k}\right)=(\exists \mathbf{y}) \gamma\left(\mathbf{c}_{k}, \mathbf{y}\right)$, so there is a choice for \mathbf{d} so that $M \models \gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)=\theta_{i}$.
(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered.
Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.
Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not \vDash(\forall \mathbf{x})(\delta(\mathbf{x}) \rightarrow \psi(\mathbf{x}))$.
Hence, some model M of T has a tuple \mathbf{s} realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$.
Interpret $\mathbf{c}_{k}=\mathbf{s} . M \models \delta\left(\mathbf{c}_{k}\right)=(\exists \mathbf{y}) \gamma\left(\mathbf{c}_{k}, \mathbf{y}\right)$, so there is a choice for \mathbf{d} so that $M \models \gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)=\theta_{i}$.
$M_{\mathbf{c d}}$ is a model of $T \cup\left\{\theta_{i}\right\}$ in which $M \not \vDash \psi\left(\mathbf{c}_{k}\right)$.
(1) (Stage $i=3 k+3$: ensuring type omission) Let \mathbf{c}_{k} be the next n-tuple to be considered.
Write θ_{i} so that it is a statement about \mathbf{c}_{k} :
Let $\gamma\left(x_{1}, \ldots, x_{n}, \mathbf{y}\right)$ be the formula obtained from sentence θ_{i} by (i) replacing each $c_{k, i}$ with x_{i} and (ii) replacing every other constant d_{j} from θ_{i} with some variable y_{j}. So θ_{i} is $\gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)$.
Then $\delta(\mathbf{x})=(\exists \mathbf{y}) \gamma(\mathbf{x}, \mathbf{y})$ is an L-formula, which cannot support p. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not \vDash(\forall \mathbf{x})(\delta(\mathbf{x}) \rightarrow \psi(\mathbf{x}))$.
Hence, some model M of T has a tuple \mathbf{s} realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$.
Interpret $\mathbf{c}_{k}=\mathbf{s} . M \models \delta\left(\mathbf{c}_{k}\right)=(\exists \mathbf{y}) \gamma\left(\mathbf{c}_{k}, \mathbf{y}\right)$, so there is a choice for \mathbf{d} so that $M \models \gamma\left(\mathbf{c}_{k}, \mathbf{d}\right)=\theta_{i}$.
$M_{\mathbf{c d}}$ is a model of $T \cup\left\{\theta_{i}\right\}$ in which $M \nLeftarrow \psi\left(\mathbf{c}_{k}\right)$.
Let $\theta_{i+1}=\theta_{i} \wedge \neg \psi\left(\mathbf{c}_{k}\right)$.

Final assembly

Final assembly

$$
T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\} .
$$

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \square

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \square

Remark.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \square

Remark.
Theorem is false as stated for uncountable languages.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \square

Remark.
Theorem is false as stated for uncountable languages.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \square

Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.

Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.
Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.
Let T be the theory axiomatized by sentences saying that all constants interpret differently

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.
Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.
Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_{i} \neq c_{j}, c_{i} \neq d_{j}, d_{i} \neq d_{j}$).

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.
Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.
Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_{i} \neq c_{j}, c_{i} \neq d_{j}, d_{i} \neq d_{j}$).
Let $p(x)$ be the partial 1-type consisting of all $\left(x \neq c_{i}\right)$.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.
Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.
Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_{i} \neq c_{j}, c_{i} \neq d_{j}, d_{i} \neq d_{j}$).
Let $p(x)$ be the partial 1-type consisting of all $\left(x \neq c_{i}\right)$.
p is not supported, but cannot be omitted.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.
Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.
Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_{i} \neq c_{j}, c_{i} \neq d_{j}, d_{i} \neq d_{j}$).
Let $p(x)$ be the partial 1-type consisting of all $\left(x \neq c_{i}\right)$.
p is not supported, but cannot be omitted.

Final assembly

$T_{\infty}=T \cup\left\{\theta_{i} \mid i \in \omega\right\}$.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p.
Remark.
Theorem is false as stated for uncountable languages.
The Standard Counterexample. Let L be a language with constants only, $\left\{c_{i} \mid i \in \omega\right\} \cup\left\{d_{j} \mid j \in \omega_{1}\right\}$.
Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_{i} \neq c_{j}, c_{i} \neq d_{j}, d_{i} \neq d_{j}$).
Let $p(x)$ be the partial 1-type consisting of all $\left(x \neq c_{i}\right)$.
p is not supported, but cannot be omitted.
A carefully worded restatement of the theorem is true for uncountable languages.

