Omitting Types

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ .

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ .

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ .

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

As the construction progresses, for each $p \in \Phi$,

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ .

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

As the construction progresses, for each $p \in \Phi$, ensure that for every tuple c of constants, $\neg \varphi(\mathbf{c})$ is added to T_{∞} for some formula with $\varphi(\mathbf{x}) \in p$.

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in a countable language L. If Φ is a countable set of unsupported partial types over T. There is a countable model of T that omits all types in Φ .

Idea: Copy Henkin's proof of the Completeness Theorem to extend T to a complete theory T_{∞} with witnesses.

As the construction progresses, for each $p \in \Phi$, ensure that for every tuple c of constants, $\neg \varphi(\mathbf{c})$ is added to T_{∞} for some formula with $\varphi(\mathbf{x}) \in p$.

The Henkin model cannot realize any type in Φ , because we forced that.

● Let L_∞ be the language obtained from L by adding countably many new constant symbols.

● Let L_∞ be the language obtained from L by adding countably many new constant symbols.

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- Solution Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- Solution Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- Solution Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- Solution Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- Solution Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$ Goals:
 - $T \cup \{\theta_i \mid i \in \omega\}$ is a Henkin L_{∞} -theory.

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- Solution Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$ Goals:
 - $T \cup \{\theta_i \mid i \in \omega\}$ is a Henkin L_{∞} -theory.

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- **③** Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$ Goals:
 - $T \cup \{\theta_i \mid i \in \omega\}$ is a Henkin L_{∞} -theory.
 - 2 The Henkin model omits *p*.

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- **③** Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$ Goals:
 - $T \cup \{\theta_i \mid i \in \omega\}$ is a Henkin L_{∞} -theory.
 - 2 The Henkin model omits *p*.

- Let L_∞ be the language obtained from L by adding countably many new constant symbols.
- **2** Enumerate with ω all L_{∞} -sentences: $\sigma_0, \sigma_1, \ldots$
- **③** Enumerate with ω all *n*-tuples of constant symbols $\mathbf{c}_0, \mathbf{c}_1, \ldots$
- Solution Construct a sequence of increasingly stronger L_{∞} -sentences $\theta_0, \theta_1, \ldots$ Goals:
 - $T \cup \{\theta_i \mid i \in \omega\}$ is a Henkin L_{∞} -theory.
 - 2 The Henkin model omits *p*.

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

• (Stage i = 3k + 1: ensuring completeness)

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

• (Stage i = 3k + 1: ensuring completeness)

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

(Stage i = 3k + 1: ensuring completeness)
Decide which of σ_k, ¬σ_k to put in T_∞:

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

 (Stage i = 3k + 1: ensuring completeness) Decide which of σ_k, ¬σ_k to put in T_∞: If i + 1 = 3k + 1, and T ∪ {θ_i} ⊨ σ_k,

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

 (Stage i = 3k + 1: ensuring completeness) Decide which of σ_k, ¬σ_k to put in T_∞: If i + 1 = 3k + 1, and T ∪ {θ_i} ⊨ σ_k, then let θ_{i+1} = θ_i ∧ σ_k,

(Stage
$$i = 3k + 2$$
: ensuring witnesses)

(Stage
$$i = 3k + 2$$
: ensuring witnesses)

(Stage
$$i = 3k + 2$$
: ensuring witnesses)
Assume that σ_k is $(\exists x)\varphi(x)$ where $T \cup \{\theta_i, (\exists x)\varphi(x)\}$ is consistent.

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

 (Stage i = 3k + 2: ensuring witnesses) Assume that σk is (∃x)φ(x) where T ∪ {θi, (∃x)φ(x)} is consistent. Choose a constant c that does not appear in T ∪ {θi}.

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

 (Stage i = 3k + 2: ensuring witnesses) Assume that σk is (∃x)φ(x) where T ∪ {θ_i, (∃x)φ(x)} is consistent. Choose a constant c that does not appear in T ∪ {θ_i}. Let θ_{i+1} = θ_i ∧ φ(c).

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

(Stage i = 3k + 2: ensuring witnesses) Assume that σk is (∃x)φ(x) where T ∪ {θi, (∃x)φ(x)} is consistent. Choose a constant c that does not appear in T ∪ {θi}. Let θi+1 = θi ∧ φ(c). If T ∪ {θi, (∃x)φ(x)} is not consistent, do nothing.

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

(Stage i = 3k + 2: ensuring witnesses) Assume that σ_k is (∃x)φ(x) where T ∪ {θ_i, (∃x)φ(x)} is consistent. Choose a constant c that does not appear in T ∪ {θ_i}. Let θ_{i+1} = θ_i ∧ φ(c). If T ∪ {θ_i, (∃x)φ(x)} is not consistent, do nothing. (θ_{i+1} = θ_i.)

Want T_{∞} to (1) be complete, (2) have witnesses, (3) omit p

We decide θ_{i+1} depending on the strength of $T \cup \{\theta_i\}$.

(Stage i = 3k + 2: ensuring witnesses) Assume that σ_k is (∃x)φ(x) where T ∪ {θ_i, (∃x)φ(x)} is consistent. Choose a constant c that does not appear in T ∪ {θ_i}. Let θ_{i+1} = θ_i ∧ φ(c). If T ∪ {θ_i, (∃x)φ(x)} is not consistent, do nothing. (θ_{i+1} = θ_i.)

• (Stage i = 3k + 3: ensuring type omission)

• (Stage i = 3k + 3: ensuring type omission)

 (Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered.

 (Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck:

(Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck: Let γ(x1,...,xn,y) be the formula obtained from sentence θi by (i) replacing each cki with xi and (ii) replacing every other constant dj from θi with some variable yj.

(Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck: Let γ(x1,...,xn,y) be the formula obtained from sentence θi by (i) replacing each cki with xi and (ii) replacing every other constant dj from θi with some variable yi. So θi is γ(ck, d).

(Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck: Let γ(x1,...,xn,y) be the formula obtained from sentence θi by (i) replacing each cki with xi and (ii) replacing every other constant dj from θi with some variable yj. So θi is γ(ck, d). Then δ(x) = (∃y)γ(x, y) is an L-formula,

(Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck: Let γ(x1,...,xn,y) be the formula obtained from sentence θi by (i) replacing each cki with xi and (ii) replacing every other constant dj from θi with some variable yj. So θi is γ(ck, d). Then δ(x) = (∃y)γ(x, y) is an L-formula, which cannot support p.

(Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck: Let γ(x1,...,xn,y) be the formula obtained from sentence θi by (i) replacing each cki with xi and (ii) replacing every other constant dj from θi with some variable yj. So θi is γ(ck, d). Then δ(x) = (∃y)γ(x, y) is an L-formula, which cannot support p. There must exist ψ(x) ∈ p such that T ⊭ (∀x)(δ(x) → ψ(x)).

(Stage i = 3k + 3: ensuring type omission) Let ck be the next n-tuple to be considered. Write θi so that it is a statement about ck: Let γ(x1,...,xn,y) be the formula obtained from sentence θi by (i) replacing each cki with xi and (ii) replacing every other constant dj from θi with some variable yj. So θi is γ(ck, d). Then δ(x) = (∃y)γ(x, y) is an L-formula, which cannot support p. There must exist ψ(x) ∈ p such that T ⊭ (∀x)(δ(x) → ψ(x)). Hence, some model M of T has a tuple s realizing δ(x) that does not realize ψ(x).

(Stage i = 3k + 3: ensuring type omission) Let \mathbf{c}_k be the next *n*-tuple to be considered. Write θ_i so that it is a statement about \mathbf{c}_k : Let $\gamma(x_1, \ldots, x_n, \mathbf{y})$ be the formula obtained from sentence θ_i by (i) replacing each $c_{k,i}$ with x_i and (ii) replacing every other constant d_i from θ_i with some variable y_i . So θ_i is $\gamma(\mathbf{c}_k, \mathbf{d})$. Then $\delta(\mathbf{x}) = (\exists \mathbf{y})\gamma(\mathbf{x}, \mathbf{y})$ is an *L*-formula, which cannot support *p*. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not\models (\forall \mathbf{x}) (\delta(\mathbf{x}) \to \psi(\mathbf{x}))$. Hence, some model M of T has a tuple s realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$. Interpret $\mathbf{c}_k = \mathbf{s}$.

(Stage i = 3k + 3: ensuring type omission) Let \mathbf{c}_k be the next *n*-tuple to be considered. Write θ_i so that it is a statement about \mathbf{c}_k : Let $\gamma(x_1, \ldots, x_n, \mathbf{y})$ be the formula obtained from sentence θ_i by (i) replacing each $c_{k,i}$ with x_i and (ii) replacing every other constant d_i from θ_i with some variable y_i . So θ_i is $\gamma(\mathbf{c}_k, \mathbf{d})$. Then $\delta(\mathbf{x}) = (\exists \mathbf{y})\gamma(\mathbf{x}, \mathbf{y})$ is an *L*-formula, which cannot support *p*. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not\models (\forall \mathbf{x}) (\delta(\mathbf{x}) \to \psi(\mathbf{x}))$. Hence, some model M of T has a tuple s realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$. Interpret $\mathbf{c}_k = \mathbf{s}$. $M \models \delta(\mathbf{c}_k) = (\exists \mathbf{y}) \gamma(\mathbf{c}_k, \mathbf{y})$, so there is a choice for d

so that $M \models \gamma(\mathbf{c}_k, \mathbf{d}) = \theta_i$.

(Stage i = 3k + 3: ensuring type omission) Let \mathbf{c}_k be the next *n*-tuple to be considered. Write θ_i so that it is a statement about \mathbf{c}_k : Let $\gamma(x_1, \ldots, x_n, \mathbf{y})$ be the formula obtained from sentence θ_i by (i) replacing each $c_{k,i}$ with x_i and (ii) replacing every other constant d_i from θ_i with some variable y_i . So θ_i is $\gamma(\mathbf{c}_k, \mathbf{d})$. Then $\delta(\mathbf{x}) = (\exists \mathbf{y})\gamma(\mathbf{x}, \mathbf{y})$ is an *L*-formula, which cannot support *p*. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not\models (\forall \mathbf{x}) (\delta(\mathbf{x}) \to \psi(\mathbf{x}))$. Hence, some model M of T has a tuple s realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$. Interpret $\mathbf{c}_k = \mathbf{s}$. $M \models \delta(\mathbf{c}_k) = (\exists \mathbf{y}) \gamma(\mathbf{c}_k, \mathbf{y})$, so there is a choice for d so that $M \models \gamma(\mathbf{c}_k, \mathbf{d}) = \theta_i$.

 $M_{\mathbf{cd}}$ is a model of $T \cup \{\theta_i\}$ in which $M \not\models \psi(\mathbf{c}_k)$.

(Stage i = 3k + 3: ensuring type omission) Let \mathbf{c}_k be the next *n*-tuple to be considered. Write θ_i so that it is a statement about \mathbf{c}_k : Let $\gamma(x_1, \ldots, x_n, \mathbf{y})$ be the formula obtained from sentence θ_i by (i) replacing each $c_{k,i}$ with x_i and (ii) replacing every other constant d_i from θ_i with some variable y_i . So θ_i is $\gamma(\mathbf{c}_k, \mathbf{d})$. Then $\delta(\mathbf{x}) = (\exists \mathbf{y})\gamma(\mathbf{x}, \mathbf{y})$ is an *L*-formula, which cannot support *p*. There must exist $\psi(\mathbf{x}) \in p$ such that $T \not\models (\forall \mathbf{x}) (\delta(\mathbf{x}) \to \psi(\mathbf{x}))$. Hence, some model M of T has a tuple s realizing $\delta(\mathbf{x})$ that does not realize $\psi(\mathbf{x})$. Interpret $\mathbf{c}_k = \mathbf{s}$. $M \models \delta(\mathbf{c}_k) = (\exists \mathbf{y}) \gamma(\mathbf{c}_k, \mathbf{y})$, so there is a choice for d so that $M \models \gamma(\mathbf{c}_k, \mathbf{d}) = \theta_i$.

 $M_{\mathbf{cd}}$ is a model of $T \cup \{\theta_i\}$ in which $M \not\models \psi(\mathbf{c}_k)$.

Let $\theta_{i+1} = \theta_i \wedge \neg \psi(\mathbf{c}_k)$.

$$T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$$

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$ T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$ T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$ T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$ T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let L be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}.$

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let *L* be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}$. Let *T* be the theory axiomatized by sentences saying that all constants interpret differently

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let *L* be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}$. Let *T* be the theory axiomatized by sentences saying that all constants

interpret differently (e.g. $c_i \neq c_j$, $c_i \neq d_j$, $d_i \neq d_j$).

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let *L* be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}.$

Let *T* be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_i \neq c_j$, $c_i \neq d_j$, $d_i \neq d_j$). Let p(x) be the partial 1-type consisting of all $(x \neq c_i)$.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let *L* be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}.$

Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_i \neq c_j$, $c_i \neq d_j$, $d_i \neq d_j$). Let p(x) be the partial 1-type consisting of all $(x \neq c_i)$. p is not supported, but cannot be omitted.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let *L* be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}.$

Let T be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_i \neq c_j$, $c_i \neq d_j$, $d_i \neq d_j$). Let p(x) be the partial 1-type consisting of all $(x \neq c_i)$. p is not supported, but cannot be omitted.

 $T_{\infty} = T \cup \{\theta_i | i \in \omega\}.$

T is a Henkin theory in which no tuple of constants realizes p. The Henkin model will not realize p. \Box

Remark.

Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let *L* be a language with constants only, $\{c_i \mid i \in \omega\} \cup \{d_j \mid j \in \omega_1\}$. Let *T* be the theory axiomatized by sentences saying that all constants interpret differently (e.g. $c_i \neq c_j$, $c_i \neq d_j$, $d_i \neq d_j$). Let p(x) be the partial 1-type consisting of all $(x \neq c_i)$. p is not supported, but cannot be omitted.

A carefully worded restatement of the theorem is true for uncountable languages.