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“Any fool can realize a type, but it takes a model theorist to
omit one.” –from Saturated Model Theory, G. Sacks

Omitting Types Theorem. (A. Ehrenfeucht.) Let T be a satisfiable theory in
a countable language L. If Φ is a countable set of unsupported partial types
over T . There is a countable model of T that omits all types in Φ.

Idea: Copy Henkin’s proof of the Completeness Theorem to extend T to a
complete theory T∞ with witnesses.

As the construction progresses, for each p ∈ Φ, ensure that for every tuple c
of constants, ¬φ(c) is added to T∞ for some formula with φ(x) ∈ p.

The Henkin model cannot realize any type in Φ, because we forced that.
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Organization of proof for Φ = {p} a single n-type

1 Let L∞ be the language obtained from L by adding countably many new
constant symbols.

2 Enumerate with ω all L∞-sentences: σ0, σ1, . . ..
3 Enumerate with ω all n-tuples of constant symbols c0, c1, . . ..
4 Construct a sequence of increasingly stronger L∞-sentences θ0, θ1, . . ..

Goals:

1 T ∪ {θi | i ∈ ω} is a Henkin L∞-theory.
2 The Henkin model omits p.
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Want T∞ to
(1) be complete, (2) have witnesses, (3) omit p

We decide θi+1 depending on the strength of T ∪ {θi}.

1 (Stage i = 3k + 1: ensuring completeness)
Decide which of σk, ¬σk to put in T∞:
If i+ 1 = 3k + 1, and T ∪ {θi} |= σk, then let θi+1 = θi ∧ σk, else let
θi+1 = θi ∧ ¬σk.

2 (Stage i = 3k + 2: ensuring witnesses)
Assume that σk is (∃x)φ(x) where T ∪ {θi, (∃x)φ(x)} is consistent.
Choose a constant c that does not appear in T ∪ {θi}.
Let θi+1 = θi ∧ φ(c).
If T ∪ {θi, (∃x)φ(x)} is not consistent, do nothing. (θi+1 = θi.)
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Want T∞ to omit p

1 (Stage i = 3k + 3: ensuring type omission)
Let ck be the next n-tuple to be considered.
Write θi so that it is a statement about ck:
Let γ(x1, . . . , xn,y) be the formula obtained from sentence θi by (i)
replacing each ck,i with xi and (ii) replacing every other constant dj

from θi with some variable yj . So θi is γ(ck,d).
Then δ(x) = (∃y)γ(x,y) is an L-formula, which cannot support p.
There must exist ψ(x) ∈ p such that T ̸|= (∀x)(δ(x) → ψ(x)).
Hence, some model M of T has a tuple s realizing δ(x) that does not
realize ψ(x).
Interpret ck = s. M |= δ(ck) = (∃y)γ(ck,y), so there is a choice for d
so that M |= γ(ck,d) = θi.
Mcd is a model of T ∪ {θi} in which M ̸|= ψ(ck).
Let θi+1 = θi ∧ ¬ψ(ck).
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Final assembly

T∞ = T ∪ {θi|i ∈ ω}.
T is a Henkin theory in which no tuple of constants realizes p.
The Henkin model will not realize p. 2

Remark.
Theorem is false as stated for uncountable languages.

The Standard Counterexample. Let L be a language with constants only,
{ci | i ∈ ω} ∪ {dj | j ∈ ω1}.
Let T be the theory axiomatized by sentences saying that all constants
interpret differently (e.g. ci ̸= cj , ci ̸= dj , di ̸= dj).
Let p(x) be the partial 1-type consisting of all (x ̸= ci).
p is not supported, but cannot be omitted.

A carefully worded restatement of the theorem is true for uncountable
languages.
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