Types

Types

Types

The type of an element is the set of all things that can be said about that element.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$. Σ is finitely satisfiable,

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$. Σ is finitely satisfiable, so it has a model B.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$. Σ is finitely satisfiable, so it has a model $\mathbf{B} .\left.\mathbf{B}\right|_{L}$ is a proper elementary extension of \mathbf{A}

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$. Σ is finitely satisfiable, so it has a model $\mathbf{B} .\left.\mathbf{B}\right|_{L}$ is a proper elementary extension of \mathbf{A} containing an element c that is "infinitely large".

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$. Σ is finitely satisfiable, so it has a model $\mathbf{B} .\left.\mathbf{B}\right|_{L}$ is a proper elementary extension of \mathbf{A} containing an element c that is "infinitely large". $\left.\mathbf{B}\right|_{L} \models \operatorname{Th}(\mathbf{A})$, so $\left.\mathbf{B}\right|_{L}$ cannot be distinguished from \mathbf{A} with a first-order sentence.

Types

The type of an element is the set of all things that can be said about that element. The type of a tuple is the set of all things that can be said about it. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\operatorname{tp}_{n}^{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}(\mathbf{a})=\{\varphi(\mathbf{x}) \mid \mathbf{A} \models \varphi[\mathbf{a}]\}
$$

Example. Let A be the L-structure $\langle\omega ;<\rangle$. Let Σ be the set of $\left(L_{A} \cup\{c\}\right)$-sentences equal to $\operatorname{Th}\left(\mathbf{A}_{A}\right) \cup\{n<c \mid n \in \omega\}$. Σ is finitely satisfiable, so it has a model $\mathbf{B} .\left.\mathbf{B}\right|_{L}$ is a proper elementary extension of \mathbf{A} containing an element c that is "infinitely large". $\left.\mathbf{B}\right|_{L} \models \operatorname{Th}(\mathbf{A})$, so $\left.\mathbf{B}\right|_{L}$ cannot be distinguished from \mathbf{A} with a first-order sentence. Yet $\left.\mathbf{B}\right|_{L}$ can be distinuished from \mathbf{A} by the fact that $\left.\mathbf{B}\right|_{L}$ has an element of type $\operatorname{tp}(c)$ and \mathbf{A} does not.

Abstract types

Abstract types

Definition.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})$.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

(1) If you replace x with a string c of new constant symbols, then new concepts correspond to old :

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

(1) If you replace x with a string c of new constant symbols, then new concepts correspond to old :

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

(1) If you replace x with a string c of new constant symbols, then new concepts correspond to old : 'partial type $\Sigma(\mathbf{x})$ ' corresponds to 'satisfiable $\Sigma(\mathbf{c})$ ';

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

(1) If you replace x with a string c of new constant symbols, then new concepts correspond to old : 'partial type $\Sigma(\mathbf{x})$ ' corresponds to 'satisfiable $\Sigma(\mathbf{c})$ '; 'complete type' corresponds to 'complete theory';

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

(1) If you replace x with a string c of new constant symbols, then new concepts correspond to old : 'partial type $\Sigma(\mathbf{x})$ ' corresponds to 'satisfiable $\Sigma(\mathbf{c})$ '; 'complete type' corresponds to 'complete theory'; ' $\Sigma(\mathbf{x})$ is realized in \mathbf{A} by a' corresponds to ' $\mathbf{A}_{\mathbf{a}}$ is a model of $\Sigma(\mathbf{c})$ '.

Abstract types

Definition. A partial n-type of a theory T is a set $\Sigma(\mathbf{x})$ of formulas in the fixed string of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that there is a model \mathbf{A} of T and a tuple $\mathbf{a} \in \mathbf{A}^{n}$ such that $\mathbf{A} \models \varphi[\mathbf{a}]$ for each $\varphi(\mathbf{x}) \in \Sigma(\mathbf{x}) .\left(\Sigma(\mathbf{x}) \subseteq \operatorname{tp}_{\mathbf{A}}(\mathbf{a}).\right)$
A complete n-type is a maximal partial n-type. $\left(\Sigma(\mathbf{x})=\operatorname{tp}_{\mathbf{A}}(\mathbf{a})\right.$.)
A (p/c) n-type of \mathbf{A} is defined to be a $(\mathrm{p} / \mathrm{c}) n$-type of $\operatorname{Th}(\mathbf{A})$.
An n-type is realized in \mathbf{A} if it is the type of some n-tuple of \mathbf{A}, else omitted.

Comments.

(1) If you replace x with a string c of new constant symbols, then new concepts correspond to old : 'partial type $\Sigma(\mathbf{x})$ ' corresponds to 'satisfiable $\Sigma(\mathbf{c})^{\prime}$ '; 'complete type' corresponds to 'complete theory'; ' $\Sigma(\mathbf{x})$ is realized in \mathbf{A} by a' corresponds to ' $\mathbf{A}_{\mathbf{a}}$ is a model of $\Sigma(\mathbf{c})$ '.
(2) "A realizes $\Sigma(\mathbf{x})$ " is the assertion that \mathbf{A} satisfies the $L_{\infty, \omega}$-sentence

$$
(\exists \mathrm{x})\left(\bigwedge_{\varphi(\mathbf{x}) \in \Sigma(\mathbf{x})} \varphi(\mathbf{x})\right)
$$

Spaces of types

Spaces of types

Since complete types of L in the variables x correspond to complete $L \cup\{\mathbf{c}\}$-theories, we can import everything we learned about spaces of complete theories to speak about spaces of complete types.

Spaces of types

Since complete types of L in the variables x correspond to complete $L \cup\{\mathbf{c}\}$-theories, we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We get a sequence of Stone spaces connected by continuous "projection maps", or "restriction maps":

Spaces of types

Since complete types of L in the variables x correspond to complete $L \cup\{\mathbf{c}\}$-theories, we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We get a sequence of Stone spaces connected by continuous "projection maps", or "restriction maps":

$$
\operatorname{Spec}(L) \leftarrow \operatorname{Spec}\left(L\left(x_{1}\right)\right) \leftleftarrows \operatorname{Spec}\left(L\left(x_{1}, x_{2}\right)\right) \leftleftarrows \ldots
$$

Spaces of types

Since complete types of L in the variables x correspond to complete $L \cup\{\mathbf{c}\}$-theories, we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We get a sequence of Stone spaces connected by continuous "projection maps", or "restriction maps":

$$
\operatorname{Spec}(L) \leftarrow \operatorname{Spec}\left(L\left(x_{1}\right)\right) \leftleftarrows \operatorname{Spec}\left(L\left(x_{1}, x_{2}\right)\right) \leftleftarrows \cdots
$$

(The first projection map of $\operatorname{Spec}\left(L\left(x_{1}, x_{2}\right)\right)$ to $\operatorname{Spec}\left(L\left(x_{1}\right)\right)$ takes a complete 2-type $\Sigma\left(x_{1}, x_{2}\right)$ and restricts it to the subset $\left.\Sigma\left(x_{1}, x_{2}\right)\right|_{x_{1}}$ of those formulas where x_{2} does not appear. $\left.\Sigma\left(x_{1}, x_{2}\right)\right|_{x_{1}}$ will be a complete type.)

Spaces of types

Since complete types of L in the variables x correspond to complete $L \cup\{\mathbf{c}\}$-theories, we can import everything we learned about spaces of complete theories to speak about spaces of complete types. We get a sequence of Stone spaces connected by continuous "projection maps", or "restriction maps":

$$
\operatorname{Spec}(L) \leftarrow \operatorname{Spec}\left(L\left(x_{1}\right)\right) \leftleftarrows \operatorname{Spec}\left(L\left(x_{1}, x_{2}\right)\right) \leftleftarrows \cdots
$$

(The first projection map of $\operatorname{Spec}\left(L\left(x_{1}, x_{2}\right)\right)$ to $\operatorname{Spec}\left(L\left(x_{1}\right)\right)$ takes a complete 2-type $\Sigma\left(x_{1}, x_{2}\right)$ and restricts it to the subset $\left.\Sigma\left(x_{1}, x_{2}\right)\right|_{x_{1}}$ of those formulas where x_{2} does not appear. $\left.\Sigma\left(x_{1}, x_{2}\right)\right|_{x_{1}}$ will be a complete type.)

If T is a theory, then $S_{n}(T)$ is the closed subset of $\operatorname{Spec}\left(L\left(x_{1}, \ldots, x_{n}\right)\right)$ consisting of n-types of T. Again, we have continuous restrictions:

$$
S_{0}(T) \leftarrow S_{1}(T) \leftleftarrows S_{2}(T) \leftleftarrows \ldots
$$

Recognizing a partial type

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\Lambda \varphi_{i}(\mathbf{x})\right)$.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\Lambda \varphi_{i}(\mathbf{x})\right)$.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)$.

Examples.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset

$$
\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)
$$

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset

$$
\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)
$$

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields. This partial 1-type is realized in an ordered field if the field has a positive infinitesimal, else it is omitted.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)$.

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields. This partial 1-type is realized in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type $\Sigma\left(v_{1}, \ldots, v_{n}\right)$ in the language of \mathbf{F}-vector spaces whose realizations in a model are the \mathbf{F}-linearly independent sequences of length n.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)$.

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields. This partial 1-type is realized in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type $\Sigma\left(v_{1}, \ldots, v_{n}\right)$ in the language of \mathbf{F}-vector spaces whose realizations in a model are the \mathbf{F}-linearly independent sequences of length n. (What are some formulas in $\Sigma\left(v_{1}, \ldots, v_{n}\right)$?)

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\Lambda \varphi_{i}(\mathbf{x})\right)$.

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields. This partial 1-type is realized in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type $\Sigma\left(v_{1}, \ldots, v_{n}\right)$ in the language of \mathbf{F}-vector spaces whose realizations in a model are the \mathbf{F}-linearly independent sequences of length n. (What are some formulas in $\Sigma\left(v_{1}, \ldots, v_{n}\right)$?)

There is an 1-type $\Sigma(t)$ in the language of fields whose realizations in a model are the transcendental numbers.

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)$.

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields. This partial 1-type is realized in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type $\Sigma\left(v_{1}, \ldots, v_{n}\right)$ in the language of \mathbf{F}-vector spaces whose realizations in a model are the \mathbf{F}-linearly independent sequences of length n. (What are some formulas in $\Sigma\left(v_{1}, \ldots, v_{n}\right)$?)

There is an 1-type $\Sigma(t)$ in the language of fields whose realizations in a model are the transcendental numbers. (I.e., numbers transcendental over the prime subfield.)

Recognizing a partial type

Thm. Let $\Sigma(\mathbf{x})$ be a set of L-formulas in \mathbf{x}. TFAE:
(1) $\Sigma(\mathbf{x})$ is a partial type of T.
(2) $T \cup \Sigma(\mathbf{c})$ is a satisfiable set of $(L \cup\{\mathbf{c}\})$-sentences
(3) There exists a model \mathbf{A} of T such that for any finite subset $\left\{\varphi_{1}(\mathbf{x}), \ldots, \varphi_{n}(\mathbf{x})\right\} \subseteq \Sigma(\mathbf{x}), \mathbf{A} \models(\exists \mathbf{x})\left(\bigwedge \varphi_{i}(\mathbf{x})\right)$.

Examples. The set consisting of all formulas $\varphi_{n}(x):(0<x<1 / n)$ is a partial 1-type for the theory T of ordered fields. This partial 1-type is realized in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type $\Sigma\left(v_{1}, \ldots, v_{n}\right)$ in the language of \mathbf{F}-vector spaces whose realizations in a model are the \mathbf{F}-linearly independent sequences of length n. (What are some formulas in $\Sigma\left(v_{1}, \ldots, v_{n}\right)$?)

There is an 1-type $\Sigma(t)$ in the language of fields whose realizations in a model are the transcendental numbers. (I.e., numbers transcendental over the prime subfield.) (What are some formulas in $\Sigma(t)$?)

Elementary embedding/substructure/extension

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.
- The diagonal embedding into an ultrapower is an elementary map.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;\langle \rangle \rightarrow\langle\omega ;\langle \rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.
- The diagonal embedding into an ultrapower is an elementary map.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;<\rangle \rightarrow\langle\omega ;<\rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.
- The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective,

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;<\rangle \rightarrow\langle\omega ;<\rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.
- The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;<\rangle \rightarrow\langle\omega ;<\rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.
- The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding. If the inclusion map $\mathbf{A} \rightarrow \mathbf{B}$ is elementary, we say that \mathbf{A} is an elementary substructure of $\mathbf{B}(\mathbf{A} \prec \mathbf{B})$ and that \mathbf{B} is an elementary extension of $\mathbf{A}(\mathbf{B} \succ \mathbf{A})$.

Elementary embedding/substructure/extension

An elementary map $j: \mathbf{A} \rightarrow \mathbf{B}$ is a type-preserving function. This means that for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\operatorname{tp}_{\mathbf{A}}(\mathbf{a})=\operatorname{tp}_{\mathbf{B}}(j(\mathbf{a}))$. Equivalently, for every $\mathbf{a} \in \mathbf{A}^{n}$ we have $\mathbf{A} \models \varphi[\mathbf{a}]$ iff $\mathbf{B} \models \varphi[j(\mathbf{a})]$.

Most functions are not elementary maps. It is often hard to find elementary maps, and hard to establish that a map is elementary. It is often easy to show that a map is not elementary.

- The inclusion $\langle\mathbf{N} ;+\rangle \hookrightarrow\langle\mathbf{Z} ;+\rangle$ is not elementary. $(\mathbf{N} \not \equiv \mathbf{Z})$
- The embedding $s:\langle\omega ;<\rangle \rightarrow\langle\omega ;<\rangle: n \mapsto n+1$ is not elementary. $(\operatorname{tp}(0) \neq \operatorname{tp}(1))$
- Any isomorphism is an elementary map.
- The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding. If the inclusion map $\mathbf{A} \rightarrow \mathbf{B}$ is elementary, we say that \mathbf{A} is an elementary substructure of $\mathbf{B}(\mathbf{A} \prec \mathbf{B})$ and that \mathbf{B} is an elementary extension of $\mathbf{A}(\mathbf{B} \succ \mathbf{A})$. In this language, $j: \mathbf{A} \rightarrow \mathbf{B}$ is elementary iff j is an embedding and $\operatorname{im}(j) \prec \mathbf{B}$.

When is $\mathbf{A} \prec \mathbf{B}$?

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathrm{A} \prec \mathrm{B}$

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathrm{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B}

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathrm{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B}

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathrm{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a}) \operatorname{iff}(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, \wedge, \neg, \exists)

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, $\wedge, \neg, \exists) \quad$ For any embedding $e: \mathbf{A} \rightarrow \mathbf{B}$, satisfaction of atomic formulas is preserved and reflected:

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, $\wedge, \neg, \exists) \quad$ For any embedding $e: \mathbf{A} \rightarrow \mathbf{B}$, satisfaction of atomic formulas is preserved and reflected:

$$
\mathbf{A} \models \varphi[\mathbf{a}] \Leftrightarrow \mathbf{B} \models \varphi[e(\mathbf{a})] .
$$

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, $\wedge, \neg, \exists) \quad$ For any embedding $e: \mathbf{A} \rightarrow \mathbf{B}$, satisfaction of atomic formulas is preserved and reflected:

$$
\mathbf{A} \models \varphi[\mathbf{a}] \Leftrightarrow \mathbf{B} \models \varphi[e(\mathbf{a})] .
$$

The set of formulas φ for which this bi-implication holds is always closed under \wedge, \neg.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, $\wedge, \neg, \exists) \quad$ For any embedding $e: \mathbf{A} \rightarrow \mathbf{B}$, satisfaction of atomic formulas is preserved and reflected:

$$
\mathbf{A} \models \varphi[\mathbf{a}] \Leftrightarrow \mathbf{B} \models \varphi[e(\mathbf{a})] .
$$

The set of formulas φ for which this bi-implication holds is always closed under \wedge, \neg. In the presence of Item (2) of the theorem, this set of formulas is also closed under \exists.

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, $\wedge, \neg, \exists) \quad$ For any embedding $e: \mathbf{A} \rightarrow \mathbf{B}$, satisfaction of atomic formulas is preserved and reflected:

$$
\mathbf{A} \models \varphi[\mathbf{a}] \Leftrightarrow \mathbf{B} \models \varphi[e(\mathbf{a})] .
$$

The set of formulas φ for which this bi-implication holds is always closed under \wedge, \neg. In the presence of Item (2) of the theorem, this set of formulas is also closed under \exists. (Check!)

When is $\mathbf{A} \prec \mathbf{B}$?

The Tarski-Vaught Test. Assume that \mathbf{A} is a substructure of \mathbf{B}. TFAE:
(1) $\mathbf{A} \prec \mathbf{B}$
(2) Any formula with parameters in \mathbf{A} that has a 'solution' in \mathbf{B} already has a solution in \mathbf{A}.
(For every $\varphi(\mathbf{a}, y)$, if $\mathbf{B} \models(\exists y) \varphi(\mathbf{a}, y)$, then $\mathbf{A} \models(\exists y) \varphi(\mathbf{a}, y)$.)
Proof.
$[(1) \Rightarrow(2)](\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{B}}(\mathbf{a})$ iff $(\exists y) \varphi(\mathbf{x}, y) \in \operatorname{tp}_{\mathbf{A}}(\mathbf{a})$.
$[(2) \Rightarrow(1)]$ (Induction: atomic formulas, $\wedge, \neg, \exists) \quad$ For any embedding $e: \mathbf{A} \rightarrow \mathbf{B}$, satisfaction of atomic formulas is preserved and reflected:

$$
\mathbf{A} \models \varphi[\mathbf{a}] \Leftrightarrow \mathbf{B} \models \varphi[e(\mathbf{a})] .
$$

The set of formulas φ for which this bi-implication holds is always closed under \wedge, \neg. In the presence of Item (2) of the theorem, this set of formulas is also closed under \exists. (Check!)

Exercises

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.

Exercises

(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.

- Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
- Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
- Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{A} \prec \mathbf{C}$ need not imply $\mathbf{B} \prec \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
- Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{A} \prec \mathbf{C}$ need not imply $\mathbf{B} \prec \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{A} \prec \mathbf{C}$ need not imply $\mathbf{B} \prec \mathbf{C}$.
(6) Give an example where $\mathbf{A}, \mathbf{B} \prec \mathbf{C}$, but $\mathbf{A} \cap \mathbf{B} \nprec \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{A} \prec \mathbf{C}$ need not imply $\mathbf{B} \prec \mathbf{C}$.
(6) Give an example where $\mathbf{A}, \mathbf{B} \prec \mathbf{C}$, but $\mathbf{A} \cap \mathbf{B} \nprec \mathbf{C}$.
(1) What are the elementary submodels of $\langle\omega ;<\rangle$?
(2) If $\mathbf{F} \prec \mathbf{K}$ is a field extension that is elementary, show that any element of \mathbf{K} that is algebraic over \mathbf{F} lies in \mathbf{F}.
(3) Is the field extension $\mathbf{R} \leq \mathbf{R}(t)$ elementary?
(9) Assume that $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{C}$.
(2) Show that $\mathbf{A} \prec \mathbf{C}$ and $\mathbf{B} \prec \mathbf{C}$ imply $\mathbf{A} \prec \mathbf{B}$.
© Show that $\mathbf{A} \prec \mathbf{B}$ and $\mathbf{A} \prec \mathbf{C}$ need not imply $\mathbf{B} \prec \mathbf{C}$.
(6) Give an example where $\mathbf{A}, \mathbf{B} \prec \mathbf{C}$, but $\mathbf{A} \cap \mathbf{B} \nprec \mathbf{C}$.

Vaught's Corollary to TV-test

Vaught's Corollary to TV-test

Corollary.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets,

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets,

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality,

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$. Hence $A \prec B$ iff $A \subseteq B$ and $A \equiv B$.
(2) Considering \mathbb{Q} as an ordered set, show that $\mathbf{A} \prec \mathbb{Q}$ iff both $\mathbf{A} \leq \mathbb{Q}$ and $\mathbf{A} \equiv \mathbb{Q}$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$. Hence $A \prec B$ iff $A \subseteq B$ and $A \equiv B$.
(2) Considering \mathbb{Q} as an ordered set, show that $\mathbf{A} \prec \mathbb{Q}$ iff both $\mathbf{A} \leq \mathbb{Q}$ and $\mathbf{A} \equiv \mathbb{Q}$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$. Hence $A \prec B$ iff $A \subseteq B$ and $A \equiv B$.
(2) Considering \mathbb{Q} as an ordered set, show that $\mathbf{A} \prec \mathbb{Q}$ iff both $\mathbf{A} \leq \mathbb{Q}$ and $\mathbf{A} \equiv \mathbb{Q}$.
(3) Show that if $U \leq V$ are infinite dimensional \mathbb{F}_{2}-spaces,

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$. Hence $A \prec B$ iff $A \subseteq B$ and $A \equiv B$.
(2) Considering \mathbb{Q} as an ordered set, show that $\mathbf{A} \prec \mathbb{Q}$ iff both $\mathbf{A} \leq \mathbb{Q}$ and $\mathbf{A} \equiv \mathbb{Q}$.
(3) Show that if $U \leq V$ are infinite dimensional \mathbb{F}_{2}-spaces,

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$. Hence $A \prec B$ iff $A \subseteq B$ and $A \equiv B$.
(2) Considering \mathbb{Q} as an ordered set, show that $\mathbf{A} \prec \mathbb{Q}$ iff both $\mathbf{A} \leq \mathbb{Q}$ and $\mathbf{A} \equiv \mathbb{Q}$.
(3) Show that if $U \leq V$ are infinite dimensional \mathbb{F}_{2}-spaces, then $U \prec V$.

Vaught's Corollary to TV-test

Corollary. Assume that $\mathbf{A} \leq \mathbf{B}$. If for every tuple $\mathbf{a} \in A^{n}$ and every $b \in B-A$ there is an $\alpha \in \operatorname{Aut}(\mathbf{B})$ such that $\alpha(\mathbf{a})=\mathbf{a}$ and $\alpha(b) \in A$, then $\mathbf{A} \prec \mathbf{B}$.

Proof. Use TV-test. If $\varphi(\mathbf{a}, y)$ has a solution $b \in B$, then it has a solution $\alpha(b) \in A . \square$

Exercises.

(1) Show that if $A \subseteq B$ are infinite sets, considered as structures in the language of equality, then $A \prec B$. Hence $A \prec B$ iff $A \subseteq B$ and $A \equiv B$.
(2) Considering \mathbb{Q} as an ordered set, show that $\mathbf{A} \prec \mathbb{Q}$ iff both $\mathbf{A} \leq \mathbb{Q}$ and $\mathbf{A} \equiv \mathbb{Q}$.
(3) Show that if $U \leq V$ are infinite dimensional \mathbb{F}_{2}-spaces, then $U \prec V$. Hence $U \prec V$ iff $U \leq V$ and $U \equiv V$.

Downward Lowenheim-Skolem Theorem

Downward Lowenheim-Skolem Theorem

Downward LS Thm.

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and $X \subseteq B$ a subset.

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$.

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i},

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem.

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem. Then $\bigcup \mathbf{A}_{i}=\bigcup X_{i}$ is a submodel of \mathbf{B} since the left hand side is,

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem. Then $\bigcup \mathbf{A}_{i}=\bigcup X_{i}$ is a submodel of \mathbf{B} since the left hand side is, while this union has the necessary solutions since the right hand side does.

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem. Then $\bigcup \mathbf{A}_{i}=\bigcup X_{i}$ is a submodel of \mathbf{B} since the left hand side is, while this union has the necessary solutions since the right hand side does. Thus $\mathbf{A} \prec \mathbf{B}$.
Since $\kappa \leq\left|X_{i+1}\right| \leq\left|A_{i}\right|+|L| \leq\left|A_{i}\right|+\kappa$

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem. Then $\bigcup \mathbf{A}_{i}=\bigcup X_{i}$ is a submodel of \mathbf{B} since the left hand side is, while this union has the necessary solutions since the right hand side does. Thus $\mathbf{A} \prec \mathbf{B}$.
Since $\kappa \leq\left|X_{i+1}\right| \leq\left|A_{i}\right|+|L| \leq\left|A_{i}\right|+\kappa$ and $\kappa \leq\left|A_{i+1}\right| \leq\left|X_{i}\right|+|L| \leq\left|X_{i}\right|+\kappa$,

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem. Then $\bigcup \mathbf{A}_{i}=\bigcup X_{i}$ is a submodel of \mathbf{B} since the left hand side is, while this union has the necessary solutions since the right hand side does. Thus $\mathbf{A} \prec \mathbf{B}$.
Since $\kappa \leq\left|X_{i+1}\right| \leq\left|A_{i}\right|+|L| \leq\left|A_{i}\right|+\kappa$ and $\kappa \leq\left|A_{i+1}\right| \leq\left|X_{i}\right|+|L| \leq\left|X_{i}\right|+\kappa$, we have

$$
\kappa=\left|X_{0}\right| \leq|\mathbf{A}| \leq\left|X_{0}\right|+\kappa \omega=\kappa .
$$

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let \mathbf{B} be an L-structure and $X \subseteq B$ a subset. For any κ satisfying $|X|+|L| \leq \kappa \leq|B|$ there is an elementary substructure $\mathbf{A} \prec \mathbf{B}$ containing X which has size κ.

Proof. By enlarging X if necessary, we may assume that $|X|=\kappa$. Now define a sequence

$$
X=X_{0} \subseteq \mathbf{A}_{0} \subseteq X_{1} \subseteq \mathbf{A}_{1} \cdots
$$

where \mathbf{A}_{i+1} is the substructure of \mathbf{B} generated by X_{i}, and X_{i+1} is obtained from \mathbf{A}_{i} by adjoining solutions (relative to \mathbf{A}_{i}) as needed in the Tarski-Vaught Theorem. Then $\bigcup \mathbf{A}_{i}=\bigcup X_{i}$ is a submodel of \mathbf{B} since the left hand side is, while this union has the necessary solutions since the right hand side does. Thus $\mathbf{A} \prec \mathbf{B}$.
Since $\kappa \leq\left|X_{i+1}\right| \leq\left|A_{i}\right|+|L| \leq\left|A_{i}\right|+\kappa$ and $\kappa \leq\left|A_{i+1}\right| \leq\left|X_{i}\right|+|L| \leq\left|X_{i}\right|+\kappa$, we have

$$
\kappa=\left|X_{0}\right| \leq|\mathbf{A}| \leq\left|X_{0}\right|+\kappa \omega=\kappa . \square
$$

Skolem's Paradox

Skolem's Paradox

Corollary to Downward LS.

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox.

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.
This is called a 'paradox', because each model V of ZFC contains objects,

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.
This is called a 'paradox', because each model \mathbf{V} of ZFC contains objects, like \mathbb{R} or $\mathcal{P}(\mathbb{N})$,

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.
This is called a 'paradox', because each model \mathbf{V} of ZFC contains objects, like \mathbb{R} or $\mathcal{P}(\mathbb{N})$, that contain uncountably many elements of \mathbf{V}.

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.
This is called a 'paradox', because each model \mathbf{V} of ZFC contains objects, like \mathbb{R} or $\mathcal{P}(\mathbb{N})$, that contain uncountably many elements of \mathbf{V}. How can \mathbf{V} be countable and contain uncountably many elements?

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.
This is called a 'paradox', because each model \mathbf{V} of ZFC contains objects, like \mathbb{R} or $\mathcal{P}(\mathbb{N})$, that contain uncountably many elements of \mathbf{V}. How can \mathbf{V} be countable and contain uncountably many elements? (Discuss!)

Skolem's Paradox

Corollary to Downward LS. If a set of sentences in a countable language has a model, then it has a countable model.

Skolem's Paradox. If ZFC is consistent, then it has a countable model.
This is called a 'paradox', because each model V of ZFC contains objects, like \mathbb{R} or $\mathcal{P}(\mathbb{N})$, that contain uncountably many elements of \mathbf{V}. How can \mathbf{V} be countable and contain uncountably many elements? (Discuss!)

If time, discuss the use of Skolemization to provide an alternative proof of the Downward LS Theorem.

