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Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of

(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable, so it has a model B. B|y, is a proper elementary extension of A
containing an element c that is “infinitely large”. B|z, |= Th(A), so B|L,
cannot be distinguished from A with a first-order sentence. Yet B|;, can be
distinuished from A by the fact that B| 7, has an element of type tp(c) and A
does not.
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An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old : ‘partial type ¥(x)’ corresponds to ‘satisfiable X(c)’;
‘complete type’ corresponds to ‘complete theory’; ‘¥ (x) is realized in A by &’
corresponds to ‘A is a model of X(c)’.

@ “A realizes ¥(x)” is the assertion that A satisfies the L, ,,-sentence

@[ A e

P(x)EX(x)
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Since complete types of L in the variables x correspond to complete
L U {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We get a sequence
of Stone spaces connected by continuous “projection maps”, or “restriction
maps”:

Spec(L) + Spec(L(x1)) & Spec(L(z1,29)) £ - -

(The first projection map of Spec(L(x1,x2)) to Spec(L(x1)) takes a complete
2-type 3(x1, x2) and restricts it to the subset (1, 22)|,, of those formulas
where 2 does not appear. (1, x2)|,, will be a complete type.)

If T is a theory, then .S,,(T") is the closed subset of Spec(L(x1,...,xy))
consisting of n-types of T'. Again, we have continuous restrictions:

So(T) + S1(T) = So(T) &£ - -
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An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
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Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is, while this union has the necessary solutions since the right hand
side does. Thus A < B.

Since k < |X;11] < |4 + |L| < |A;| + K and

k < |Ai1| < |Xi| + |L| < |Xi| + K, we have

K = | Xo| < |A| < |Xo| + kw = k.0
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Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,
like R or P(N), that contain uncountably many elements of V. How can V be
countable and contain uncountably many elements? (Discuss!)

If time, discuss the use of Skolemization to provide an alternative proof of the
Downward LS Theorem.
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