Types

Types 1/11

Types
2/11

The type of an element is the set of all things that can be said about that
element.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then
;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then
;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <).

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then
;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of
(L4 U{c})-sentences equal to Th(A4) U {n < c¢|n € w}.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of
(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable,

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of
(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable, so it has a model B.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of
(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable, so it has a model B. B|y, is a proper elementary extension of A

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of

(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable, so it has a model B. B|y, is a proper elementary extension of A
containing an element c that is “infinitely large”.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of

(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable, so it has a model B. B|y, is a proper elementary extension of A
containing an element c that is “infinitely large”. B|z, |= Th(A), so B|L,
cannot be distinguished from A with a first-order sentence.

Types 2/11

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

Ifa=(ay,...,anp) € A"and x = (z1,...,zy,), then

;' (a) = tpa(a) = tp(a) = {(x) | A | plal}

Example. Let A be the L-structure (w; <). Let ¥ be the set of

(L4 U{c})-sentences equal to Th(A 4) U {n < ¢ | n € w}. ¥ is finitely
satisfiable, so it has a model B. B|y, is a proper elementary extension of A
containing an element c that is “infinitely large”. B|z, |= Th(A), so B|L,
cannot be distinguished from A with a first-order sentence. Yet B|;, can be
distinuished from A by the fact that B| 7, has an element of type tp(c) and A
does not.

Types 2/11

Abstract types

Types 3/11

Abstract types

Definition.

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple
a € A" such that A = pla] for each p(x) € X(x).

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple
a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type.

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)
A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old :

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old :

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old : ‘partial type ¥(x)’ corresponds to ‘satisfiable X(c)’;

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old : ‘partial type ¥(x)’ corresponds to ‘satisfiable X(c)’;
‘complete type’ corresponds to ‘complete theory’;

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old : ‘partial type ¥(x)’ corresponds to ‘satisfiable X(c)’;
‘complete type’ corresponds to ‘complete theory’; ‘¥ (x) is realized in A by &’
corresponds to ‘A is a model of X(c)’.

Types 3/11

Abstract types

Definition. A partial n-type of a theory T is a set 3(x) of formulas in the fixed
string of variables x = (z1, ..., ;) such that there is a model A of T" and a tuple

a € A" such that A = pla] for each p(x) € X(x). (X(x) C tpa(a).)
A complete n-type is a maximal partial n-type. (3(x) = tp, (a).)

A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).

An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.

@ If you replace x with a string ¢ of new constant symbols, then new concepts
correspond to old : ‘partial type ¥(x)’ corresponds to ‘satisfiable X(c)’;
‘complete type’ corresponds to ‘complete theory’; ‘¥ (x) is realized in A by &’
corresponds to ‘A is a model of X(c)’.

@ “A realizes ¥(x)” is the assertion that A satisfies the L, ,,-sentence

@[A e

P(x)EX(x)

Types 3/11

Spaces of types

Types 4/11

Spaces of types

Since complete types of L in the variables x correspond to complete
L U {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types.

Types 4/11

Spaces of types

Since complete types of L in the variables x correspond to complete

L U {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We get a sequence
of Stone spaces connected by continuous “projection maps”, or “restriction

maps”:

Types 4/11

Spaces of types

Since complete types of L in the variables x correspond to complete

L U {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We get a sequence
of Stone spaces connected by continuous “projection maps”, or “restriction
maps”:
Spec(L) + Spec(L(x1)) & Spec(L(z1,29)) £ - -

Types 4/11

Spaces of types

Since complete types of L in the variables x correspond to complete
L U {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We get a sequence
of Stone spaces connected by continuous “projection maps”, or “restriction
maps”:

Spec(L) + Spec(L(x1)) & Spec(L(z1,29)) £ - -

(The first projection map of Spec(L(x1,x2)) to Spec(L(x1)) takes a complete
2-type 3(x1, x2) and restricts it to the subset (1, 22)|,, of those formulas
where 2 does not appear. (1, x2)|,, will be a complete type.)

Types 4/11

Spaces of types

Since complete types of L in the variables x correspond to complete
L U {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We get a sequence
of Stone spaces connected by continuous “projection maps”, or “restriction
maps”:

Spec(L) + Spec(L(x1)) & Spec(L(z1,29)) £ - -

(The first projection map of Spec(L(x1,x2)) to Spec(L(x1)) takes a complete
2-type 3(x1, x2) and restricts it to the subset (1, 22)|,, of those formulas
where 2 does not appear. (1, x2)|,, will be a complete type.)

If T is a theory, then .S,,(T") is the closed subset of Spec(L(x1,...,xy))
consisting of n-types of T'. Again, we have continuous restrictions:

So(T) + S1(T) = So(T) &£ - -

Types 4/11

Recognizing a partial type

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples.

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa
partial 1-type for the theory 7" of ordered fields.

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{p1(x), - en(¥)} € E(x), A f= (3x) (A pi(x))-
Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa

partial 1-type for the theory 7" of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa
partial 1-type for the theory 7" of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type (v, ..., v,) in the language of F-vector spaces whose
realizations in a model are the F-linearly independent sequences of length n.

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa
partial 1-type for the theory 7" of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type (v, ..., v,) in the language of F-vector spaces whose
realizations in a model are the F-linearly independent sequences of length n.
(What are some formulas in X(vy,...,v,)?)

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa
partial 1-type for the theory 7" of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type (v, ..., v,) in the language of F-vector spaces whose
realizations in a model are the F-linearly independent sequences of length n.
(What are some formulas in X(vy,...,v,)?)

There is an 1-type 3(t) in the language of fields whose realizations in a model
are the transcendental numbers.

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa
partial 1-type for the theory 7" of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type (v, ..., v,) in the language of F-vector spaces whose
realizations in a model are the F-linearly independent sequences of length n.
(What are some formulas in X(vy,...,v,)?)

There is an 1-type 3(t) in the language of fields whose realizations in a model
are the transcendental numbers. (I.e., numbers transcendental over the prime
subfield.)

Types 5/11

Recognizing a partial type

Thm. Let ¥(x) be a set of L-formulas in x. TFAE:
@ X(x) is a partial type of T'.
@ T U X(c) is a satisfiable set of (L U {c})-sentences
© There exists a model A of T such that for any finite subset

{e1(x), -, en(x)} € B(x), A = (F%)(A pi(x)).

Examples. The set consisting of all formulas ¢, (x): (0 <z < 1/n)isa
partial 1-type for the theory 7" of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type (v, ..., v,) in the language of F-vector spaces whose
realizations in a model are the F-linearly independent sequences of length n.
(What are some formulas in X(vy,...,v,)?)

There is an 1-type 3(t) in the language of fields whose realizations in a model
are the transcendental numbers. (I.e., numbers transcendental over the prime
subfield.) (What are some formulas in 3(¢)?)

Types 5/11

Elementary embedding/substructure/extension

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)).

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)
@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)
@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)
@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.

(tp(0) # tp(1))

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)
@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) 7 tp(1))

@ Any isomorphism is an elementary map.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)
@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) 7 tp(1))

@ Any isomorphism is an elementary map.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) # tp(1))

@ Any isomorphism is an elementary map.

@ The diagonal embedding into an ultrapower is an elementary map.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) # tp(1))

@ Any isomorphism is an elementary map.

@ The diagonal embedding into an ultrapower is an elementary map.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) # tp(1))

@ Any isomorphism is an elementary map.

@ The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective,

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) # tp(1))

@ Any isomorphism is an elementary map.

@ The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding.

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) # tp(1))

@ Any isomorphism is an elementary map.

@ The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding. If the inclusion
map A — B is elementary, we say that A is an elementary substructure of
B (A < B) and that B is an elementary extension of A (B >~ A).

Types 6/11

Elementary embedding/substructure/extension

An elementary map j : A — B is a type-preserving function. This means
that for every a € A™ we have tp, (a) = tpg(j(a)). Equivalently, for every
a € A" we have A |= p[a] iff B = p[j(a)].

Most functions are not elementary maps. It is often hard to find elementary
maps, and hard to establish that a map is elementary. It is often easy to show
that a map is not elementary.

e The inclusion (N; +) < (Z;+) is not elementary. (N # Z)

@ The embedding s : (w; <) — (w; <) : n — n + 1 is not elementary.
(tp(0) # tp(1))

@ Any isomorphism is an elementary map.

@ The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding. If the inclusion
map A — B is elementary, we say that A is an elementary substructure of
B (A < B) and that B is an elementary extension of A (B >~ A). In this
language, j : A — B is elementary iff j is an embedding and im(j) < B.

Types 6/11

Whenis A < B?

Types 7/11

Whenis A < B?

The Tarski-Vaught Test.

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B.

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.
[(D=2)] (3y)e(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.
[(D=2)] (3y)e(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(D)]

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.
(D=1 Fy)e(x,y) € tpg(a) iff (3y)o(x,y) € tpa (a).
[(2)=-(1)] (Induction: atomic formulas, A, —, 3)

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢(a,y), then A = (y)p(a,y).)
Proof.
[(D=2)] (Fy)e(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(1)] (Induction: atomic formulas, A,—,3) For any embedding
e : A — B, satisfaction of atomic formulas is preserved and reflected:

Types 7/11

When is A < B?
The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢(a,y), then A = (y)p(a,y).)
Proof.
[(D=2)] (Fy)e(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(1)] (Induction: atomic formulas, A,—,3) For any embedding
e : A — B, satisfaction of atomic formulas is preserved and reflected:

A Egla) & B E glea)l

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.
[(D=2)] (3y)e(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(1)] (Induction: atomic formulas, A,—,3) For any embedding
e : A — B, satisfaction of atomic formulas is preserved and reflected:

A Egla) & B E glea)l

The set of formulas for which this bi-implication holds is always closed
under A, .

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.

[(D=)] Fy)p(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(1)] (Induction: atomic formulas, A,—,3) For any embedding
e : A — B, satisfaction of atomic formulas is preserved and reflected:

A Egla) & B E glea)l

The set of formulas for which this bi-implication holds is always closed
under A, —. In the presence of Item (2) of the theorem, this set of formulas is
also closed under 4.

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.

[(D=)] Fy)p(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(1)] (Induction: atomic formulas, A,—,3) For any embedding
e : A — B, satisfaction of atomic formulas is preserved and reflected:

A Egla) & B E glea)l

The set of formulas for which this bi-implication holds is always closed
under A, —. In the presence of Item (2) of the theorem, this set of formulas is
also closed under 3. (Check!)

Types 7/11

Whenis A < B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
QO A<B

@ Any formula with parameters in A that has a ‘solution’ in B already has
a solution in A.

(For every ¢(a, y), if B |= (Jy)¢p(a, y), then A = (Jy)p(a,y).)

Proof.

[(D=)] Fy)p(x,y) € tpg(a) iff (Fy)p(x,y) € tpa(a).

[(2)=(1)] (Induction: atomic formulas, A,—,3) For any embedding
e : A — B, satisfaction of atomic formulas is preserved and reflected:

A Egla) & B E glea)l

The set of formulas for which this bi-implication holds is always closed
under A, —. In the presence of Item (2) of the theorem, this set of formulas is
also closed under 3. (Check!) O

Types 7/11

Exercises

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

© Assume that A < B < C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

© Assume that A < B < C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

© Assume that A < B < C.
@ Show that A < B and B < C imply A < C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

© Assume that A < B < C.
@ Show that A < B and B < C imply A < C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?
Q Assumethat A < B < C.

@ Show that A < B and B < C imply A < C.
® Show that A < Cand B < Cimply A < B.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?
Q Assumethat A < B < C.

@ Show that A < B and B < C imply A < C.
® Show that A < Cand B < Cimply A < B.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

© Assume that A < B < C.

@ Show that A < Band B < Cimply A < C.
® Show that A < Cand B < C imply A < B.
© Show that A < B and A < C need not imply B < C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?

© Assume that A < B < C.

@ Show that A < Band B < Cimply A < C.
® Show that A < Cand B < C imply A < B.
© Show that A < B and A < C need not imply B < C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?
Q Assumethat A < B < C.
@ Show that A < B and B < C imply A < C.

® Show that A < Cand B < Cimply A < B.
© Show that A < B and A < C need not imply B < C.

@ Give an example where A,B < C,but ANB £ C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?
Q Assumethat A < B < C.
@ Show that A < B and B < C imply A < C.

® Show that A < Cand B < Cimply A < B.
© Show that A < B and A < C need not imply B < C.

@ Give an example where A,B < C,but ANB £ C.

Types 8/11

Exercises

@ What are the elementary submodels of (w; <)?

Q IfF < Kiis afield extension that is elementary, show that any element of
K that is algebraic over F lies in F.

@ Is the field extension R < R(t) elementary?
Q Assumethat A < B < C.
@ Show that A < B and B < C imply A < C.

® Show that A < Cand B < Cimply A < B.
© Show that A < B and A < C need not imply B < C.

@ Give an example where A,B < C,but ANB £ C.

Types 8/11

Vaught’s Corollary to TV-test

Types 9/11

Vaught’s Corollary to TV-test

Corollary.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then

A < B.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
a(b) € A.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets,

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets,

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of

equality,

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B. Hence A < Biff AC Band A = B.

© Considering Q as an ordered set, show that A < Q iff both A < Q and A = Q.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B. Hence A < Biff AC Band A = B.

© Considering Q as an ordered set, show that A < Q iff both A < Q and A = Q.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B. Hence A < Biff AC Band A = B.

© Considering Q as an ordered set, show that A < Q iff both A < Q and A = Q.
© Show that if U < V are infinite dimensional Fy-spaces,

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B. Hence A < Biff AC Band A = B.

© Considering Q as an ordered set, show that A < Q iff both A < Q and A = Q.
© Show that if U < V are infinite dimensional Fy-spaces,

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B. Hence A < Biff AC Band A = B.

© Considering Q as an ordered set, show that A < Q iff both A < Q and A = Q.
© Show that if U < V are infinite dimensional Fy-spaces, then U < V.

Types 9/11

Vaught’s Corollary to TV-test

Corollary. Assume that A < B. If for every tuple a € A™ and every
b € B — Athereis an o € Aut(B) such that a(a) = a and «(b) € A, then
A <B.

Proof. Use TV-test. If p(a, y) has a solution b € B, then it has a solution
ab) e A. O

Exercises.
@ Show that if A C B are infinite sets, considered as structures in the language of
equality, then A < B. Hence A < Biff AC Band A = B.

© Considering Q as an ordered set, show that A < Q iff both A < Q and A = Q.

© Show that if U < V are infinite dimensional Fy-spaces, then U < V. Hence
U<ViffU<VandU=V.

Types 9/11

Downward Lowenheim-Skolem Theorem

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm.

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset.

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B

containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x.

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now

define a sequence
X=X0CA)C X1 CAy---

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now

define a sequence
X=X0CA)C X1 CAy---

where A, is the substructure of B generated by X,

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now
define a sequence

X=X0CA)C X1 CAy---
where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem.

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now
define a sequence

X=X0CA)C X1 CAy---
where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is,

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now

define a sequence

X=X0CA)C X1 CAy---
where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is, while this union has the necessary solutions since the right hand
side does.

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now
define a sequence
X=X0CA)C X1 CAy---

where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is, while this union has the necessary solutions since the right hand
side does. Thus A < B.

Since k < |X¢+1| < |A1| + |L| < |A2| + K

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now
define a sequence

X=X0CA)C X1 CAy---
where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is, while this union has the necessary solutions since the right hand
side does. Thus A < B.
Since k < |X;11] < |4 + |L| < |A;| + K and
K <A | <X+ L] < | XG] + &,

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now
define a sequence
X=X0CA)C X1 CAy---

where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is, while this union has the necessary solutions since the right hand
side does. Thus A < B.

Since k < |X;11] < |4 + |L| < |A;| + K and

k < |Ai1| < |Xi| + |L| < |Xi| + K, we have

k= |Xo| <|A| < | Xo| + kw = k.

Types 10/11

Downward Lowenheim-Skolem Theorem

Downward LS Thm. Let B be an L-structure and X C B a subset. For any
k satisfying | X'| 4+ |L| < k < | B there is an elementary substructure A < B
containing X which has size .

Proof. By enlarging X if necessary, we may assume that | X | = x. Now
define a sequence
X=X0CA)C X1 CAy---

where A, is the substructure of B generated by X;, and X, is obtained
from A; by adjoining solutions (relative to A;) as needed in the
Tarski-Vaught Theorem. Then | A; = |J X is a submodel of B since the left
hand side is, while this union has the necessary solutions since the right hand
side does. Thus A < B.

Since k < |X;11] < |4 + |L| < |A;| + K and

k < |Ai1| < |Xi| + |L| < |Xi| + K, we have

K = | Xo| < |A| < |Xo| + kw = k.0

Types 10/11

Skolem’s Paradox

Types 11/11

Skolem’s Paradox

Corollary to Downward LS.

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox.

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,
like R or P(N),

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,
like R or P(N), that contain uncountably many elements of V.

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,
like R or P(N), that contain uncountably many elements of V. How can V be
countable and contain uncountably many elements?

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,
like R or P(N), that contain uncountably many elements of V. How can V be
countable and contain uncountably many elements? (Discuss!)

Types 11/11

Skolem’s Paradox

Corollary to Downward LS. If a set of sentences in a countable language has
a model, then it has a countable model.

Skolem’s Paradox. If ZFC is consistent, then it has a countable model.

This is called a ‘paradox’, because each model V of ZFC contains objects,
like R or P(N), that contain uncountably many elements of V. How can V be
countable and contain uncountably many elements? (Discuss!)

If time, discuss the use of Skolemization to provide an alternative proof of the
Downward LS Theorem.

Types 11/11

