The space of complete *L*-theories

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2)

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3)

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer's Theorem.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer's Theorem. A nonempty perfect subspace of a compact zero-dimensional metric space is homeomorphic to the Cantor set.

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer's Theorem. A nonempty perfect subspace of a compact zero-dimensional metric space is homeomorphic to the Cantor set.

Let L be the language of one unary predicate symbol, P(x).

Let L be the language of one unary predicate symbol, P(x). A typical structure in this language has the form $\mathbf{A} = \langle A; P(x) \rangle$.

Let L be the language of one unary predicate symbol, P(x). A typical structure in this language has the form $\mathbf{A} = \langle A; P(x) \rangle$. The isomorphism type of \mathbf{A} is determined by the pair of cardinals (κ, λ)

Let *L* be the language of one unary predicate symbol, P(x). A typical structure in this language has the form $\mathbf{A} = \langle A; P(x) \rangle$. The isomorphism type of \mathbf{A} is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$.

Let *L* be the language of one unary predicate symbol, P(x). A typical structure in this language has the form $\mathbf{A} = \langle A; P(x) \rangle$. The isomorphism type of \mathbf{A} is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete *L*-theory has a countable model,

Theorem.

Theorem. Let *L* be a countable language.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories,

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank,

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank,

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.

A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.

A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X. Otherwise p is **nonisolated**

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.

A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X. Otherwise p is **nonisolated** (or a **limit point** of X).

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.

A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X. Otherwise p is **nonisolated** (or a **limit point** of X).

A space X is **scattered** if every nonempty subspace $V \subseteq X$ contains a point that is isolated in V.

Theorem. Let L be a countable language. If X = V(T) is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of X = V(T) may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.

A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X. Otherwise p is **nonisolated** (or a **limit point** of X).

A space X is **scattered** if every nonempty subspace $V \subseteq X$ contains a point that is isolated in V.

A closed subspace $P \subseteq X$ is **perfect** if it contains no point that is isolated in P.

Definition.

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the period points

X' consisting of the nonisolated points.

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

 $X_0 := X$

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{array}{ll} X_0 & := X \\ X_{\alpha+1} & := X'_{\alpha} \end{array}$$

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{array}{rcl} X_0 & := X \\ X_{\alpha+1} & := X'_{\alpha} \\ X_{\lambda} & := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.} \end{array}$$

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{array}{rl} X_0 & := X \\ X_{\alpha+1} & := X'_{\alpha} \\ X_{\lambda} & := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.} \end{array}$$

The Cantor-Bendixson **rank** of X is the least α such that $X_{\alpha} = X_{\alpha+1}$.

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{array}{rcl} X_0 & := X \\ X_{\alpha+1} & := X'_{\alpha} \\ X_{\lambda} & := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.} \end{array}$$

The Cantor-Bendixson **rank** of X is the least α such that $X_{\alpha} = X_{\alpha+1}$.

I will say that point $p \in X$ has Cantor-Bendixson rank α if $p \in X_{\alpha} - X_{\alpha+1}$.

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{array}{rcl} X_0 & := X \\ X_{\alpha+1} & := X'_{\alpha} \\ X_{\lambda} & := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.} \end{array}$$

The Cantor-Bendixson **rank** of X is the least α such that $X_{\alpha} = X_{\alpha+1}$.

I will say that point $p \in X$ has Cantor-Bendixson rank α if $p \in X_{\alpha} - X_{\alpha+1}$. If p is not assigned an ordinal rank, then say that p has Cantor-Bendixson rank ∞ .

Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{array}{rcl} X_0 & := X \\ X_{\alpha+1} & := X'_{\alpha} \\ X_{\lambda} & := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.} \end{array}$$

The Cantor-Bendixson **rank** of X is the least α such that $X_{\alpha} = X_{\alpha+1}$.

I will say that point $p \in X$ has Cantor-Bendixson rank α if $p \in X_{\alpha} - X_{\alpha+1}$. If p is not assigned an ordinal rank, then say that p has Cantor-Bendixson rank ∞ .

The structure of the proof of the Cantor-Bendixson Theorem is to show that a space X satisfying the hypotheses of the theorem decomposes (uniquely) as $X = S \cup P$ where S is the subspace of elements with rank $< \infty$, and P is the subspace of elements with rank $= \infty$.

Theorem.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.) The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X,

we made about X.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.) The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_{α} satisfies all the assumptions

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.) The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha$ = set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha$ = set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha$ = set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

 $P = X_{\alpha}$ for some (=the least) α such that $X_{\alpha} = X_{\alpha+1} = X'_{\alpha}$.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

 $P = X_{\alpha}$ for some (=the least) α such that $X_{\alpha} = X_{\alpha+1} = X'_{\alpha}$. This implies that P is perfect.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞ , and let S = X - P = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_{\alpha} - X_{\alpha+1}$. The point p must be isolated in X_{α} , so X has a basic open set B_p such that $B_p \cap X_{\alpha} = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

 $P = X_{\alpha}$ for some (=the least) α such that $X_{\alpha} = X_{\alpha+1} = X'_{\alpha}$. This implies that P is perfect. \Box