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Background

We have shown that the space of complete L-theories is a compact,
Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is
compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal.
(Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is
metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a
countable basis is uniquely representable as the disjoint union of a countable,
open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer’s Theorem. A nonempty perfect subspace of a compact
zero-dimensional metric space is homeomorphic to the Cantor set.
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Example

Let L be the language of one unary predicate symbol, P (x). A typical
structure in this language has the form A = ⟨A; P (x)⟩. The isomorphism
type of A is determined by the pair of cardinals (κ, λ) where |P [A]| = κ and
|A− P [A]| = λ. Since every complete L-theory has a countable model, the
complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which
κ, λ ∈ {0, 1, 2, . . . , ω}. The space of complete theories of L-structures looks
like:

c r r r rr r r r rr r r r rr r r r rr r r r r
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isolated point →
nonisolated point←

= a finitely
axiomatizable
theory

= a nonfinitely
axiomatizable
theory
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Application of TOP to the space of complete theories

Theorem. Let L be a countable language. If X = V (T ) is a closed subspace
of the space of complete L-theories, then X is uniquely representable as the
disjoint union S ∪ P where S is a countable, open, scattered subspace and P
is a possibly empty perfect subspace.
If P ̸= ∅, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T ′ in the scattered part of X = V (T ) may be
assigned an ordinal rank, its Cantor-Bendixson rank, which may be
interpreted as a measure of how difficult it is to axiomatize T ′ relative to T .

Some Definitions.
A point p of a topological space X is isolated if {p} is an open set in X .
Otherwise p is nonisolated (or a limit point of X).
A space X is scattered if every nonempty subspace V ⊆ X contains a point
that is isolated in V .
A closed subspace P ⊆ X is perfect if it contains no point that is isolated in
P .
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Cantor-Bendixson Rank

Definition. The Cantor-Bendixson derivative of a space X is the subspace
X ′ consisting of the nonisolated points.
Recursively define

X0 := X
Xα+1 := X ′

α

Xλ :=
⋂

α<λ Xα, if λ is limit.

The Cantor-Bendixson rank of X is the least α such that Xα = Xα+1.

∗I∗ will say that point p ∈ X has Cantor-Bendixson rank α if
p ∈ Xα −Xα+1. If p is not assigned an ordinal rank, then say that p has
Cantor-Bendixson rank∞.

The structure of the proof of the Cantor-Bendixson Theorem is to show that a
space X satisfying the hypotheses of the theorem decomposes (uniquely) as
X = S ∪ P where S is the subspace of elements with rank <∞, and P is the
subspace of elements with rank =∞.
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Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is
uniquely representable as the disjoint union of a countable, open, scattered
subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence X = X0 ⊇ X1 ⊇ · · · of derived subspaces is a descending
sequence of closed subspaces of X , and each Xα satisfies all the assumptions
we made about X . Let P =

⋂
Xα = set of points of rank∞, and let

S = X − P = set of points of rank <∞. P is closed and S is open.

For each point p ∈ S there is some α <∞ such that p ∈ Xα −Xα+1. The
point p must be isolated in Xα, so X has a basic open set Bp such that
Bp ∩Xα = {p}. The map p 7→ Bp is an injective function from S to the
countable basis of X . This shows that S is countable. Each nonempty subset
V ⊆ S has a point of least rank, and this point must be isolated in V , showing
that S is scattered.

P = Xα for some (=the least) α such that Xα = Xα+1 = X ′
α. This implies

that P is perfect. 2
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