The space of complete L-theories
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn's Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer's Theorem. A nonempty perfect subspace of a compact zero-dimensional metric space is homeomorphic to the Cantor set.
Background

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem.
Background

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2)
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem.
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3)
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal.
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal.
(Normal = disjoint closed sets can be separated by disjoint open sets.)
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem.
Background

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is metrizable.
We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal $=$ disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem.
Background

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal $=$ disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.
Background

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer’s Theorem.
Background

We have shown that the space of complete \(L \)-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer’s Theorem. A nonempty perfect subspace of a compact zero-dimensional metric space is homeomorphic to the Cantor set.
Background

We have shown that the space of complete L-theories is a compact, Hausdorff, zero-dimensional space.

Theorem. (Munkres, Thm 26.2) A closed subspace of a compact space is compact.

Theorem. (Munkres, Thm 32.3) A compact, Hausdorff space is normal. (Normal = disjoint closed sets can be separated by disjoint open sets.)

Urysohn’s Metrization Theorem. A normal space with a countable basis is metrizable.

Cantor-Bendixson Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a (possibly empty) perfect subspace.

Brouwer’s Theorem. A nonempty perfect subspace of a compact zero-dimensional metric space is homeomorphic to the Cantor set.
Example

Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the 'nearest' pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, ..., \omega\}$. The space of complete L-theories looks like:

\[
\begin{array}{ccccccc}
\text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\text{...} & \text{isolated point} & \text{...} & \text{isolated point} & \text{...} & \text{isolated point} & \text{...} \\
\text{...} & \text{nonisolated point} & \text{...} & \text{nonisolated point} & \text{...} & \text{nonisolated point} & \text{...} \\
\text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\end{array}
\]

The space of complete L-theories 3/6
Example

Let L be the language of one unary predicate symbol, $P(x)$.
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$.
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ).
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$.
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model,
Example

Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$.

The space of complete L-theories looks like:

```
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
... ... ...
   ···   ···
   ···   ···
   ···   ···
   ···   ···
   ···   ···
... ... ...
```

→ isolated point
← nonisolated point

= a finitely axiomatizable theory
= a nonfinitely axiomatizable theory
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$. The space of complete theories of L-structures looks like:
Example

Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$. The space of complete theories of L-structures looks like:

```
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
```

The space of complete L-theories
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$. The space of complete theories of L-structures looks like:

The space of complete L-theories
Example

Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$. The space of complete theories of L-structures looks like:

- isolated point \rightarrow
- nonisolated point \leftarrow

The space of complete L-theories looks like:

```
. . . . . . . . .
::: : : : : : : :
. . . . . . . . .
. . . . . . . . . ← nonisolated point
isolated point $\rightarrow$
. . . . . . . . .
::: : : : : : : :
. . . . . . . . .
. . . . . . . . .
```

The space of complete L-theories
Example

Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$. The space of complete theories of L-structures looks like:

```
  . . . . . . . .
  . . . . . . . .
  . . . . . . . .  ← nonisolated point
isolated point  →
= a finitely
axiomatizable
theory
```

The space of complete L-theories
Let L be the language of one unary predicate symbol, $P(x)$. A typical structure in this language has the form $A = \langle A; P(x) \rangle$. The isomorphism type of A is determined by the pair of cardinals (κ, λ) where $|P[A]| = \kappa$ and $|A - P[A]| = \lambda$. Since every complete L-theory has a countable model, the complete theory of A is determined by the ‘nearest’ pair (κ, λ) for which $\kappa, \lambda \in \{0, 1, 2, \ldots, \omega\}$. The space of complete theories of L-structures looks like:

\[\begin{array}{ccccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\circ & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}\]

isolated point \rightarrow = a finitely axiomatizable theory

\leftarrow nonisolated point = a nonfinitely axiomatizable theory
Theorem. Let \mathcal{L} be a countable language. If $X = V(\mathcal{T})$ is a closed subspace of the space of complete \mathcal{L}-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space. Moreover, each complete theory \mathcal{T}' in the scattered part of $X = V(\mathcal{T})$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize \mathcal{T}' relative to \mathcal{T}.

Some Definitions. A point p of a topological space X is isolated if $\{p\}$ is an open set in X. Otherwise p is nonisolated (or a limit point of X). A space X is scattered if every nonempty subspace $V \subseteq X$ contains a point that is isolated in V. A closed subspace $P \subseteq X$ is perfect if it contains no point that is isolated in P. The space of complete \mathcal{L}-theories
Theorem.
Theorem. Let L be a countable language.
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories,
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.
Theorem. Let \(L \) be a countable language. If \(X = V(T) \) is a closed subspace of the space of complete \(L \)-theories, then \(X \) is uniquely representable as the disjoint union \(S \cup P \) where \(S \) is a countable, open, scattered subspace and \(P \) is a possibly empty perfect subspace.

If \(P \neq \emptyset \), then \(P \) is homeomorphic to the Cantor space.

Moreover, each complete theory \(T' \) in the scattered part of \(X = V(T) \) may be assigned an ordinal rank,
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank,
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.
Application of TOP to the space of complete theories

Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.
A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X.
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.
A point p of a topological space X is isolated if $\{p\}$ is an open set in X. Otherwise p is nonisolated
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace.

If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.
A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X. Otherwise p is **nonisolated** (or a **limit point** of X).
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.
A point p of a topological space X is isolated if $\{p\}$ is an open set in X. Otherwise p is nonisolated (or a limit point of X).
A space X is scattered if every nonempty subspace $V \subseteq X$ contains a point that is isolated in V.
Theorem. Let L be a countable language. If $X = V(T)$ is a closed subspace of the space of complete L-theories, then X is uniquely representable as the disjoint union $S \cup P$ where S is a countable, open, scattered subspace and P is a possibly empty perfect subspace. If $P \neq \emptyset$, then P is homeomorphic to the Cantor space.

Moreover, each complete theory T' in the scattered part of $X = V(T)$ may be assigned an ordinal rank, its Cantor-Bendixson rank, which may be interpreted as a measure of how difficult it is to axiomatize T' relative to T.

Some Definitions.
A point p of a topological space X is **isolated** if $\{p\}$ is an open set in X. Otherwise p is **nonisolated** (or a **limit point** of X).
A space X is **scattered** if every nonempty subspace $V \subseteq X$ contains a point that is isolated in V.
A closed subspace $P \subseteq X$ is **perfect** if it contains no point that is isolated in P.

Cantor-Bendixson Rank

Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points. Recursively define $X_0 := X$. If X_α is the Cantor-Bendixson derivative, then

$$X_{\alpha+1} := X_\alpha'$$

and

$$X_\lambda := \bigcap_{\alpha < \lambda} X_\alpha$$

if λ is limit.

The Cantor-Bendixson rank of X is the least α such that $X_\alpha = X_{\alpha+1}$.

I will say that point $p \in X$ has Cantor-Bendixson rank α if $p \in X_\alpha - X_{\alpha+1}$.

If p is not assigned an ordinal rank, then say that p has Cantor-Bendixson rank ∞.

The structure of the proof of the Cantor-Bendixson Theorem is to show that a space X satisfying the hypotheses of the theorem decomposes (uniquely) as $X = S \cup P$ where S is the subspace of elements with rank $< \infty$, and P is the subspace of elements with rank $= \infty$.

The space of complete L-theories
Cantor-Bendixson Rank

Definition.
Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points.
Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

- $X_0 := X$
- $X_{\alpha+1} := X'_\alpha$
- $X_\lambda := \bigcap_{\alpha < \lambda} X_\alpha$, if λ is a limit.
Definition. The *Cantor-Bendixson derivative* of a space X is the subspace X' consisting of the nonisolated points. Recursively define

$$X_0 := X$$

The Cantor-Bendixson rank of X is the least α such that $X_\alpha = X_{\alpha+1}$.
Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{align*}
X_0 & := X \\
X_{\alpha+1} & := X'_\alpha
\end{align*}$$

The Cantor-Bendixson rank of X is the least α such that $X_\alpha = X_{\alpha+1}$.
Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$\begin{align*}
X_0 & := X \\
X_{\alpha+1} & := X'_{\alpha} \\
X_{\lambda} & := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.}
\end{align*}$$
Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

$$
X_0 := X \\
X_{\alpha + 1} := X'_{\alpha} \\
X_\lambda := \bigcap_{\alpha < \lambda} X_\alpha, \text{ if } \lambda \text{ is limit.}
$$

The Cantor-Bendixson rank of X is the least α such that $X_\alpha = X_{\alpha + 1}$.

The space of complete L-theories
Definition. The **Cantor-Bendixson derivative** of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

\[
X_0 := X \\
X_{\alpha + 1} := X'_{\alpha} \\
X_\lambda := \bigcap_{\alpha < \lambda} X_\alpha, \text{ if } \lambda \text{ is limit.}
\]

The Cantor-Bendixson **rank** of X is the least α such that $X_\alpha = X_{\alpha + 1}$.

I will say that point $p \in X$ **has Cantor-Bendixson rank** α if $p \in X_\alpha - X_{\alpha + 1}$.
Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

\[
X_0 := X \\
X_{\alpha+1} := X'_{\alpha} \\
X_\lambda := \bigcap_{\alpha < \lambda} X_\alpha, \text{ if } \lambda \text{ is limit.}
\]

The Cantor-Bendixson rank of X is the least α such that $X_\alpha = X_{\alpha+1}$.

I will say that point $p \in X$ has Cantor-Bendixson rank α if $p \in X_\alpha - X_{\alpha+1}$. If p is not assigned an ordinal rank, then say that p has Cantor-Bendixson rank ∞.

The structure of the proof of the Cantor-Bendixson Theorem is to show that a space X satisfying the hypotheses of the theorem decomposes (uniquely) as $X = S \cup P$ where S is the subspace of elements with rank $< \infty$, and P is the subspace of elements with rank $= \infty$.

The space of complete L-theories
Cantor-Bendixson Rank

Definition. The Cantor-Bendixson derivative of a space X is the subspace X' consisting of the nonisolated points.

Recursively define

\[X_0 := X \]
\[X_{\alpha+1} := X'_{\alpha} \]
\[X_\lambda := \bigcap_{\alpha < \lambda} X_{\alpha}, \text{ if } \lambda \text{ is limit.} \]

The Cantor-Bendixson rank of X is the least α such that $X_\alpha = X_{\alpha+1}$.

I will say that point $p \in X$ has Cantor-Bendixson rank α if $p \in X_\alpha - X_{\alpha+1}$. If p is not assigned an ordinal rank, then say that p has Cantor-Bendixson rank ∞.

The structure of the proof of the Cantor-Bendixson Theorem is to show that a space X satisfying the hypotheses of the theorem decomposes (uniquely) as $X = S \cup P$ where S is the subspace of elements with rank $< \infty$, and P is the subspace of elements with rank $= \infty$.
Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X.

Let $P = \bigcap X_\alpha =$ set of points of rank ∞, and let $S = X - P =$ set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$.

The point p must be isolated in X_α, so X has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$.

The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable.

Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

$P = X_\alpha$ for some (the least) α such that $X_\alpha = X_{\alpha+1} = X'$.

This implies that P is perfect.

The space of complete L-theories
Proof of the Cantor-Bendixson Theorem

Theorem.

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X.

Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$.

The point p must be isolated in X_α, so X_α has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$.

The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable.

Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

$P = X_\alpha$ for some (\text{least}) α such that $X_\alpha = X_\alpha + 1 = X'$. This implies that P is perfect.
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof.
Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X.

Let $P = \bigcap X_\alpha$ = set of points of rank ∞, and let $S = X - P$ = set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$.

The point p must be isolated in X_α, so X_α has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$.

The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable.

Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

$P = X_\alpha$ for some (=the least) α such that $X_\alpha = X_{\alpha+1} = X'$. This implies that P is perfect.
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.) The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X,
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X.

$P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$. P is closed and S is open. For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$. The point p must be isolated in X_α, so X_α has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered. $P = X_\alpha$ for some (=the least) α such that $X_\alpha = X_{\alpha+1} = X'$.

This implies that P is perfect.
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$.
Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$. P is closed and S is open.
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha =$ set of points of rank ∞, and let $S = X - P =$ set of points of rank $< \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$.
Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence \(X = X_0 \supseteq X_1 \supseteq \cdots \) of derived subspaces is a descending sequence of closed subspaces of \(X \), and each \(X_\alpha \) satisfies all the assumptions we made about \(X \). Let \(P = \bigcap X_\alpha \) = set of points of rank \(\infty \), and let \(S = X - P \) = set of points of rank \(< \infty \). \(P \) is closed and \(S \) is open.

For each point \(p \in S \) there is some \(\alpha < \infty \) such that \(p \in X_\alpha - X_{\alpha+1} \). The point \(p \) must be isolated in \(X_\alpha \), so \(X \) has a basic open set \(B_p \) such that \(B_p \cap X_\alpha = \{ p \} \).
Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$. The point p must be isolated in X_α, so X has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X.

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence \(X = X_0 \supseteq X_1 \supseteq \cdots \) of derived subspaces is a descending sequence of closed subspaces of \(X \), and each \(X_\alpha \) satisfies all the assumptions we made about \(X \). Let \(P = \bigcap X_\alpha = \) set of points of rank \(\infty \), and let \(S = X - P = \) set of points of rank \(< \infty \). \(P \) is closed and \(S \) is open.

For each point \(p \in S \) there is some \(\alpha < \infty \) such that \(p \in X_\alpha - X_{\alpha+1} \). The point \(p \) must be isolated in \(X_\alpha \), so \(X \) has a basic open set \(B_p \) such that \(B_p \cap X_\alpha = \{ p \} \). The map \(p \mapsto B_p \) is an injective function from \(S \) to the countable basis of \(X \). This shows that \(S \) is countable.

The space of complete \(L \)-theories
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.) The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$. The point p must be isolated in X_α, so X has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.
Proof of the Cantor-Bendixson Theorem

Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)
The sequence \(X = X_0 \supseteq X_1 \supseteq \cdots \) of derived subspaces is a descending sequence of closed subspaces of \(X \), and each \(X_\alpha \) satisfies all the assumptions we made about \(X \). Let \(P = \bigcap X_\alpha = \) set of points of rank \(\infty \), and let \(S = X - P = \) set of points of rank \(< \infty \). \(P \) is closed and \(S \) is open.

For each point \(p \in S \) there is some \(\alpha < \infty \) such that \(p \in X_\alpha - X_\alpha + 1 \). The point \(p \) must be isolated in \(X_\alpha \), so \(X \) has a basic open set \(B_p \) such that \(B_p \cap X_\alpha = \{ p \} \). The map \(p \mapsto B_p \) is an injective function from \(S \) to the countable basis of \(X \). This shows that \(S \) is countable. Each nonempty subset \(V \subseteq S \) has a point of least rank, and this point must be isolated in \(V \), showing that \(S \) is scattered.

\(P = X_\alpha \) for some (=the least) \(\alpha \) such that \(X_\alpha = X_{\alpha+1} = X'_\alpha \).
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence $X = X_0 \supseteq X_1 \supseteq \cdots$ of derived subspaces is a descending sequence of closed subspaces of X, and each X_α satisfies all the assumptions we made about X. Let $P = \bigcap X_\alpha = \text{set of points of rank } \infty$, and let $S = X - P = \text{set of points of rank } < \infty$. P is closed and S is open.

For each point $p \in S$ there is some $\alpha < \infty$ such that $p \in X_\alpha - X_{\alpha+1}$. The point p must be isolated in X_α, so X has a basic open set B_p such that $B_p \cap X_\alpha = \{p\}$. The map $p \mapsto B_p$ is an injective function from S to the countable basis of X. This shows that S is countable. Each nonempty subset $V \subseteq S$ has a point of least rank, and this point must be isolated in V, showing that S is scattered.

$P = X_\alpha$ for some (=the least) α such that $X_\alpha = X_{\alpha+1} = X'_\alpha$. This implies that P is perfect.
Theorem. Any closed subspace of a metric space with a countable basis is uniquely representable as the disjoint union of a countable, open, scattered subspace and a possibly empty perfect subspace.

Proof. (Existence of decomposition only.)

The sequence \(X = X_0 \supseteq X_1 \supseteq \cdots \) of derived subspaces is a descending sequence of closed subspaces of \(X \), and each \(X_\alpha \) satisfies all the assumptions we made about \(X \). Let \(P = \bigcap X_\alpha \) = set of points of rank \(\infty \), and let \(S = X - P \) = set of points of rank \(< \infty \). \(P \) is closed and \(S \) is open.

For each point \(p \in S \) there is some \(\alpha < \infty \) such that \(p \in X_\alpha - X_{\alpha+1} \). The point \(p \) must be isolated in \(X_\alpha \), so \(X \) has a basic open set \(B_p \) such that \(B_p \cap X_\alpha = \{p\} \). The map \(p \mapsto B_p \) is an injective function from \(S \) to the countable basis of \(X \). This shows that \(S \) is countable. Each nonempty subset \(V \subseteq S \) has a point of least rank, and this point must be isolated in \(V \), showing that \(S \) is scattered.

\(P = X_\alpha \) for some (=the least) \(\alpha \) such that \(X_\alpha = X_{\alpha+1} = X'_{\alpha} \). This implies that \(P \) is perfect. \(\square \)