Saturated models

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

By the Compactness Theorem, any model of T has an elementary extension that realizes all types.

One expects such an extension to behave like a "completion" or "compactification" of the original model.

Defn. Call a model **S** of *T* weakly saturated if it realizes all types in $S_n(T)$ for all *n*.

The definition of "weakly saturated model" seems dual to the definition of atomic model, so in an ideal world, the following would be true:

- Countable weakly saturated models of T would exist.
- Any two would be isomorphic.
- Any countable model of T would embed elementarily into the weakly saturated model.
- Two tuples in a weakly saturated model would have the same type iff they differed by an automorphism.

But all of these statements are false.

The first statement becomes true provided $|S_n(T)| < 2^{\aleph_0}$ for all *n*. And then all statements become true with " ω -saturated" in place of "weakly saturated".

The Ehrenfeucht theory

Example. Let T be the theory of dense linear order without endpoints expanded by a strictly increasing ω -chain of constants.

- Signature involves $<, c_0, c_1, \ldots$ only.
- 2 Axioms for T =
 - (i) Axioms of dense linear orders without endpoints.
 - (ii) $c_i < c_{i+1}$ for each *i*.
- Theory has q.e. and is complete.
- The theory has three isomorphism types of countable models. $(I(T, \omega) = 3.)$ Any countable model is isomorphic to one of the form $\langle \mathbf{Q}; \langle c_0, c_1, \ldots \rangle$ where
 - (i) (Model \mathbf{M}_1) The sequence $(c_i)_{i \in \omega}$ is unbounded.
 - (ii) (Model M_2) The sequence $(c_i)_{i \in \omega}$ has a least upper bound in the model.
 - (iii) (Model M_3) The sequence $(c_i)_{i \in \omega}$ has an upper bound in the model but has no least upper bound in the model.

The countable models M_1, M_2, M_3

Figure: Top $(x) = \{c_0 < x, c_1 < x, c_2 < x, \ldots\}$, nonisolated $p \in S_1(T)$

Observations

- The fact that I(T, \u03c6) = 3 can be checked by noting that a countable model is determined up to isomorphism by the part above all the constants, and that part is a (possibly empty) dense linear order without top element.
- $\label{eq:models} \textbf{O} \mbox{ All embeddings between models are elementary by q.e.} \\ \mathbf{M}_1 \prec \mathbf{M}_2 \prec \mathbf{M}_3 \prec \mathbf{M}_2.$
- I(T, ω) < 2^{ℵ0} implies S_n(T) is scattered for all n, so one of the models must be atomic. The only plausible candidate is M₁.
- All countable models embed elementarily into both M₂ and M₃. This is enough to prove that M₂ and M₃ are both weakly saturated.

• The model \mathbf{M}_2 does not have the type-extension property. Let $p \in S_1(T)$ be the type $p(x_1) = \operatorname{Top}(x_1)$. Let $q \in S_2(T)$ be the type $q(x_1, x_2) = \operatorname{Top}(x_1) \cup \operatorname{Top}(x_2) \cup \{x_2 < x_1\}$. $q|_1 = p$. Let $a = \operatorname{lub}(c_i)$. The 1-tuple (a) realizes p. Some 1-tuples that realize p can be extended to 2-tuples that realize q. But the 1-tuple (a) cannot be extended to a 2-tuple that realizes q.

Tweaking the example by coloring the points

We introduce two new unary relations, red(x) and blue(x). Our goal is to construct a theory like Ehrenfeucht's, but with every point colored either red or blue, but not both colors.

- Signature involves <, red(x), blue(x), c_0 , c_1 , ... only.
- 2 Axioms for T =
 - (i) Axioms of dense linear orders without endpoints.
 - (ii) An axiom saying that each point has a unique color:

 $(\forall x)((\operatorname{red}(x) \land \neg \operatorname{blue}(x)) \lor (\neg \operatorname{red}(x) \land \operatorname{blue}(x))).$

(iii) Both red points and blue points are dense:

 $(\forall w)(\forall x)((w < x) \rightarrow (\exists y)(\exists z)(\operatorname{red}(y) \land \operatorname{blue}(z) \land (w < y < x) \land (w < z < x))).$

(iv) $c_i < c_{i+1}$ for each *i*. (v) red (c_i) for each *i*.

This theory has four countable models

Figure: $\mathbf{N}_1 \prec \mathbf{N}_2 \prec \mathbf{N}_3 \prec \mathbf{N}_4 \prec \mathbf{N}_2$

More observations about the uncolored version

- \mathbf{M}_2 (the model where $lub(c_i)$ exists in the model) does not have the type-extension property. The problem involves the bound $a = lub(c_i)$.
- If a = lub(c_i), then p = {c_i < x < a | i ∈ ω} is a 1-type in L_a, which is not realized in (M₂)_a. Thus, M₂ is weakly saturated, while an expansion by a single constant is no longer weakly saturated.
- All upper bounds of the sequence (c_i)_{i∈ω} have the same 1-type over the empty set (namely Top(x)). But a = lub(c_i) does not differ from other realizations of Top(x) by an automorphism.
- On the other hand, M₃ does have the type-extension property, any expansion of M₃ by finitely many constants is again weakly saturated, and any two tuples of the same type in M₃ differ by an automorphism. M₃ is ω-saturated.

Isomorphism

Let **A** and **B** be countable structures both enumerated by ω : $\mathbf{A} = \{a_0, a_1, a_2, ...\}$ $\mathbf{B} = \{b_0, b_1, b_2, ...\}$ The assignment $a_i \mapsto b_i$ is an isomorphism iff it is type-preserving:

$$\operatorname{tp}(a_0, \dots, a_{n-1}) = \operatorname{tp}(b_0, \dots, b_{n-1})$$
 (1)

for all n.

Suppose we want to build an isomorphism one element at a time, by ensuring that, given equality of types of length-n initial segments \mathbf{a} , \mathbf{b} , as in (1), and given the choice for a_n , we can find a corresponding choice for b_n . If we work only with types over the empty set, then we need some form of the type-extension lemma. It is enough to assume \mathbf{A} and \mathbf{B} are weakly saturated PLUS any two tuples of the same type differ by an automorphism. OR, we can work with \mathbf{A}_a and \mathbf{B}_b and then deal only with types in the expanded language L_a .

ω -saturation

Defn. Let T be a complete theory.

- A model M of T is ω -saturated if, whenever $\mathbf{a} \in M^n$, $\mathbf{M}_{\mathbf{a}}$ realizes every type in $S_1(\mathbf{a})$. Often written "whenever $A \subseteq \mathbf{M}$, $|A| < \omega$, \mathbf{M}_A realizes every type in $S_1(A)$ ". (Equivalently, \mathbf{M}_A realizes every type in $S_n(A)$ for each finite n, Proposition 4.3.2, Marker.)
- **2** (Type extension) A model **M** of *T* is ω -homogeneous if, whenever $\mathbf{a}, \mathbf{b} \in M^n$, $\operatorname{tp}(\mathbf{a}) = \operatorname{tp}(\mathbf{b})$, and $c \in M$, then there exists $d \in M$ such that $\operatorname{tp}(\mathbf{a}c) = \operatorname{tp}(\mathbf{b}d)$.
- A model M of T is strongly ω -homogeneous if, whenever $\mathbf{a}, \mathbf{b} \in M^n$, $\operatorname{tp}(\mathbf{a}) = \operatorname{tp}(\mathbf{b})$, then there is an automorphism α of M such that $\alpha(\mathbf{a}) = \mathbf{b}$.
- A model M of T is ω^+ -universal if every countable model of T is elementarily embeddable in M.

Theorem. Let T be a complete theory in a countable language. TFAE about a countable model \mathbf{M} of T.

- **1** M is ω -saturated.
- M is weakly saturated and ω-homogeneous. (M realizes all types over the empty set and has the type extension property.)
- **6** M is weakly saturated and strongly ω -homogeneous.
- M is ω^+ -universal and ω -homogeneous.
- **(a)** M is ω^+ -universal and strongly ω -homogeneous.

Trivial implications.

 ω^+ -universality implies weak saturation. Strong ω -homogeneity implies ω -homogeneity.

Not-too-hard implications.

ω-saturation implies strong ω-homogeneity. (Back and forth.) ω-saturation implies ω⁺-universality. (Forth.)

Weak saturation and ω -homogeneity in E's Theory

Figure: M_2 , M_3 weakly saturated; M_1 , $M_3 \omega$ -homogeneous

Theorem. Two countable ω -saturated models of T are isomorphic. (Back and forth.)

Assume A and B are ω -saturated models of T.

Enumerate them.

Start back and forth: Assume that $f : \mathbf{a} \to \mathbf{b}$ is a partial isomorphism that we want to extend. At this point, $tp^{\mathbf{A}}(\mathbf{a}) = tp^{\mathbf{B}}(\mathbf{b})$. Equivalently, $\mathbf{A} \models \varphi(\mathbf{a})$ iff $\mathbf{B} \models \varphi(\mathbf{b})$. Equivalently, $\mathbf{A}_{\mathbf{a}} \equiv \mathbf{B}_{\mathbf{b}}$.

Assume it is our turn to extend the domain. Let $c \in \mathbf{A}$ be the least unconsidered element. Let $p = tp^{\mathbf{A}_{\mathbf{a}}}(c)$. Let d be a realization of p in $\mathbf{B}_{\mathbf{b}}$. Thus, $\mathbf{A} \models \theta(\mathbf{a}c)$ iff $\mathbf{B} \models \theta(\mathbf{b}d)$. I.e., $tp^{\mathbf{A}}(\mathbf{a}c) = tp^{\mathbf{B}}(\mathbf{b}d)$. Extend f so that f(c) = d. \Box

When $\mathbf{A} = \mathbf{B}$, this argument proves strong ω -homogeneity of ω -saturated models. Half of the argument proves ω^+ -universality.

Theorem. Let T be a complete theory in a countable language. If A and B are countable ω -saturated models of T, then $A \cong B$.

Theorem. Let T be a complete theory in a countable language. TFAE.

- T has a countable ω -saturated model.
- 0 T has a countable weakly saturated model.
- T is "small". $(|S_n(T)| < 2^{\aleph_0} \text{ for all } n.)$

Part of proof. (1) \Rightarrow (2) \Rightarrow (3) uses only ideas we have seen. (3) implies that, for any model \mathbf{M} of T, and any finite subset $A \subseteq \mathbf{M}$, (|A| = m, say), then $|S_n^{\mathbf{M}}(A)| \leq |S_{m+n}(T)| \leq \omega$. Idea for the rest. Let $\mathbf{M}_0 = \mathbf{M}$. Find a countable elementary extension $\mathbf{M}_{i+1} \succ \mathbf{M}_i$ that realizes the countable set of 1-types over finite subsets of \mathbf{M}_i . Let $\widehat{\mathbf{M}}$ be the union of the \mathbf{M}_i . \Box

Extensions to higher cardinalities

Defn. A model **M** of *T* is κ -saturated if whenever $A \subseteq M$ satisfies $|A| < \kappa$, then \mathbf{M}_A realizes all $p \in S_1^{\mathbf{M}}(A)$. We say that **M** is saturated if it is $|\mathbf{M}|$ -saturated.

To discuss this when $\kappa \neq \omega$, we need a concept of type for infinitely long tuples.

Some basic results.

- κ -saturated = κ^+ -universal and κ -homogeneous.
- Solution of ultrapowers increases saturation.
- An infinite model M satisfying |M| ≤ 2^κ has a κ⁺-saturated elementary extension of cardinality 2^κ.

Saturated models of ACF_{p_1}

Theorem. A model **K** of ACF_p is saturated if(f) it contains an algebraically independent subset of size $|\mathbf{K}|$.

Proof sketch. Let's explain why \mathbb{C} is saturated.

Let $A \subseteq \mathbb{C}$ satisfy $|A| < |\mathbb{C}|$.

Let **F** be an algebraically closed subfield of \mathbb{C} containing A and satisfying $|\mathbf{F}| < |\mathbb{C}|$.

By q.e., types over A are determined by \pm atomic part.

Any type over A with a "+atomic" part $(p(x, \mathbf{a}) = 0)$ is realized in **F**, hence in \mathbb{C} .

Any complete type over A with only "-atomic" describes an element transcendental over \mathbf{F} . \mathbb{C} has such an element. \Box .

Appendix: Ultrapowers are somewhat saturated

Let A be a structure and $B \subseteq A$ be a subset. Let $\kappa = ||L_B||$. Let $I = \mathcal{P}_{\text{fin}}(\kappa)$ be the set of finite subsets of κ .

 $I = \mathcal{P}_{\text{fin}}(\kappa)$ is directed by inclusion. The tail ends of this directed set form a proper filter on I, which can be extended to an ultrafilter \mathcal{U} on I. Let's outline why $\prod_{\mathcal{U}} \mathbf{A}$ realizes every type in $S_1^{\mathbf{A}}(B)$.

Accept for now that every $p \in S_1^{\mathbf{A}}(B)$ has cardinality $\kappa = ||L_B||$, and choose a bijection $\beta_p : \kappa \to p$. There is an induced bijection from $I = \mathcal{P}_{\text{fin}}(\kappa)$ to $\mathcal{P}_{\text{fin}}(p)$, which we also call β_p . Thus, for each $i \in I$, there is assigned a set $\beta_p(i)$, which is a finite subset of p.

Since p is consistent with Th(A_B), for each i there is an element $a_i \in \mathbf{A}$ that satisfies all formulas in the finite set $\beta_p(i)$. Let $\mathbf{a} \in \mathbf{A}^I$ be the tuple satisfying $(\mathbf{a})_i = a_i$ for all i. For each $\varphi(x) \in p$ we have that $[\![\varphi[\mathbf{a}]]\!]$ contains the tail end in $I = \mathcal{P}_{\text{fin}}(\kappa)$ generated by $\beta_p^{-1}(\varphi(x))$. This tail end belongs to \mathcal{U} , hence $\prod_{\mathcal{U}} \mathbf{A} \models \varphi[\mathbf{a}]$. This is true for any $\varphi(x) \in p$, so a realizes p in $\prod_{\mathcal{U}} \mathbf{A}$. Similarly, every $q \in S_1^{\mathbf{A}}(B)$ is realized in the same ultrapower. It is worth recording that $|\prod_{\mathcal{U}} \mathbf{A}| = |\mathbf{A}|^{||L_B||}$.

Appendix to the appendix

On the previous slide it was claimed that all types in $S_1^{\mathbf{A}}(B)$ have the same cardinality, namely $\kappa = ||L_B||$. This fact was used so that we could correspond finite subsets of any $p \in S_1^{\mathbf{A}}(B)$ to finite subsets of the fixed set κ . This was needed so that a fixed ultrapower was able to realize all types in $S_1^{\mathbf{A}}(B)$ simultaneously.

One can prove that all types in $S_1^{\mathbf{A}}(B)$ have size $\kappa = ||L_B||$ as follows.

• If
$$p \in S_1^{\mathbf{A}}(B)$$
, then $p \subseteq L_B$, so $|p| \le ||L_B|| = \kappa$.

- The existence of the map φ(x) → (∀x₁) · · · (∀x_k)φ(x), which assigns to a formula its universal closure, is a finite-to-one map from L_B to a subset of the L_B-sentences. This establishes that the set of L_B-sentences has size at least κ. (I am basing this claim on the fact that if X and Y are infinite and there is a finite-to-one map from X into Y, then |X| ≤ |Y|.)
- Any p ∈ S₁^A(B) contains half of the L_B-sentences, hence p has cardinality at least ½ κ = κ.