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Models realizing many types

Throughout these slides, T will be a complete theory in a countable language
which has infinite models.

By the Compactness Theorem, any model of T has an elementary extension
that realizes all types.

One expects such an extension to behave like a “completion” or
“compactification” of the original model.

Defn. Call a model S of T weakly saturated if it realizes all types in Sn(T )
for all n.
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Models realizing many types

The definition of “weakly saturated model” seems dual to the definition of
atomic model, so in an ideal world, the following would be true:

1 Countable weakly saturated models of T would exist.
2 Any two would be isomorphic.
3 Any countable model of T would embed elementarily into the weakly

saturated model.
4 Two tuples in a weakly saturated model would have the same type iff

they differed by an automorphism.

But all of these statements are false.
The first statement becomes true provided |Sn(T )| < 2ℵ0 for all n. And then
all statements become true with “ω-saturated” in place of “weakly saturated”.
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The Ehrenfeucht theory

Example. Let T be the theory of dense linear order without endpoints
expanded by a strictly increasing ω-chain of constants.

1 Signature involves <, c0, c1, . . . only.
2 Axioms for T =

(i) Axioms of dense linear orders without endpoints.
(ii) ci < ci+1 for each i.

3 Theory has q.e. and is complete.
4 The theory has three isomorphism types of countable models.

(I(T, ω) = 3.) Any countable model is isomorphic to one of the form
⟨Q; <, c0, c1, . . .⟩ where

(i) (Model M1) The sequence (ci)i∈ω is unbounded.
(ii) (Model M2) The sequence (ci)i∈ω has a least upper bound in the model.

(iii) (Model M3) The sequence (ci)i∈ω has an upper bound in the model but
has no least upper bound in the model.
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The countable models M1, M2, M3
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Figure: Top(x) = {c0 < x, c1 < x, c2 < x, . . .}, nonisolated p ∈ S1(T )
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Observations

1 The fact that I(T, ω) = 3 can be checked by noting that a countable
model is determined up to isomorphism by the part above all the
constants, and that part is a (possibly empty) dense linear order without
top element.

2 All embeddings between models are elementary by q.e.
M1 ≺ M2 ≺ M3 ≺ M2.

3 I(T, ω) < 2ℵ0 implies Sn(T ) is scattered for all n, so one of the models
must be atomic. The only plausible candidate is M1.

4 All countable models embed elementarily into both M2 and M3. This is
enough to prove that M2 and M3 are both weakly saturated.

5 The model M2 does not have the type-extension property.
Let p ∈ S1(T ) be the type p(x1) = Top(x1). Let q ∈ S2(T ) be the type
q(x1, x2) = Top(x1) ∪ Top(x2) ∪ {x2 < x1}. q|1 = p. Let a = lub(ci).
The 1-tuple (a) realizes p. Some 1-tuples that realize p can be extended
to 2-tuples that realize q. But the 1-tuple (a) cannot be extended to a
2-tuple that realizes q.
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Tweaking the example by coloring the points

We introduce two new unary relations, red(x) and blue(x). Our goal is to
construct a theory like Ehrenfeucht’s, but with every point colored either red
or blue, but not both colors.

1 Signature involves <, red(x), blue(x), c0, c1, . . . only.
2 Axioms for T =

(i) Axioms of dense linear orders without endpoints.
(ii) An axiom saying that each point has a unique color:

(∀x)((red(x) ∧ ¬blue(x)) ∨ (¬red(x) ∧ blue(x))).

(iii) Both red points and blue points are dense:

(∀w)(∀x)((w < x) → (∃y)(∃z)(red(y) ∧ blue(z) ∧ (w < y < x) ∧ (w < z < x))).

(iv) ci < ci+1 for each i.
(v) red(ci) for each i.
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This theory has four countable models
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Figure: N1 ≺ N2 ≺ N3 ≺ N4 ≺ N2
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More observations about the uncolored version

1 M2 (the model where lub(ci) exists in the model) does not have the
type-extension property. The problem involves the bound a = lub(ci).

2 If a = lub(ci), then p = {ci < x < a | i ∈ ω} is a 1-type in La, which is
not realized in (M2)a. Thus, M2 is weakly saturated, while an
expansion by a single constant is no longer weakly saturated.

3 All upper bounds of the sequence (ci)i∈ω have the same 1-type over the
empty set (namely Top(x)). But a = lub(ci) does not differ from other
realizations of Top(x) by an automorphism.

4 On the other hand, M3 does have the type-extension property, any
expansion of M3 by finitely many constants is again weakly saturated,
and any two tuples of the same type in M3 differ by an automorphism.
M3 is ω-saturated.
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Isomorphism

Let A and B be countable structures both enumerated by ω:
A = {a0, a1, a2, . . .}
B = {b0, b1, b2, . . .}
The assignment ai 7→ bi is an isomorphism iff it is type-preserving:

tp(a0, . . . , an−1) = tp(b0, . . . , bn−1) (1)

for all n.

Suppose we want to build an isomorphism one element at a time, by ensuring
that, given equality of types of length-n initial segments a, b, as in (1), and
given the choice for an, we can find a corresponding choice for bn. If we work
only with types over the empty set, then we need some form of the
type-extension lemma. It is enough to assume A and B are weakly saturated
PLUS any two tuples of the same type differ by an automorphism. OR, we
can work with Aa and Bb and then deal only with types in the expanded
language La.

Saturated models 10 / 19



ω-saturation

Defn. Let T be a complete theory.
1 A model M of T is ω-saturated if, whenever a ∈ Mn, Ma realizes

every type in S1(a). Often written “whenever A ⊆ M, |A| < ω, MA

realizes every type in S1(A)”. (Equivalently, MA realizes every type in
Sn(A) for each finite n, Proposition 4.3.2, Marker.)

2 (Type extension) A model M of T is ω-homogeneous if, whenever
a, b ∈ Mn, tp(a) = tp(b), and c ∈ M , then there exists d ∈ M such
that tp(ac) = tp(bd).

3 A model M of T is strongly ω-homogeneous if, whenever a, b ∈ Mn,
tp(a) = tp(b), then there is an automorphism α of M such that
α(a) = b.

4 A model M of T is ω+-universal if every countable model of T is
elementarily embeddable in M.
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Relationships

Theorem. Let T be a complete theory in a countable language. TFAE about
a countable model M of T .

1 M is ω-saturated.
2 M is weakly saturated and ω-homogeneous. (M realizes all types over

the empty set and has the type extension property.)
3 M is weakly saturated and strongly ω-homogeneous.
4 M is ω+-universal and ω-homogeneous.
5 M is ω+-universal and strongly ω-homogeneous.

Trivial implications.
ω+-universality implies weak saturation.
Strong ω-homogeneity implies ω-homogeneity.

Not-too-hard implications.
ω-saturation implies strong ω-homogeneity. (Back and forth.)
ω-saturation implies ω+-universality. (Forth.)

Saturated models 12 / 19



Weak saturation and ω-homogeneity in E’s Theory
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Figure: M2, M3 weakly saturated; M1, M3 ω-homogeneous
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A proof sketch

Theorem. Two countable ω-saturated models of T are isomorphic. (Back and
forth.)

Assume A and B are ω-saturated models of T .

Enumerate them.

Start back and forth: Assume that f : a → b is a partial isomorphism that we
want to extend. At this point, tpA(a) = tpB(b). Equivalently, A |= φ(a) iff
B |= φ(b). Equivalently, Aa ≡ Bb.

Assume it is our turn to extend the domain. Let c ∈ A be the least
unconsidered element. Let p = tpAa(c). Let d be a realization of p in Bb.
Thus, A |= θ(ac) iff B |= θ(bd). I.e., tpA(ac) = tpB(bd). Extend f so that
f(c) = d. 2

When A = B, this argument proves strong ω-homogeneity of ω-saturated
models. Half of the argument proves ω+-universality.
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Existence and uniqueness

Theorem. Let T be a complete theory in a countable language. If A and B
are countable ω-saturated models of T , then A ∼= B.

Theorem. Let T be a complete theory in a countable language. TFAE.
1 T has a countable ω-saturated model.
2 T has a countable weakly saturated model.
3 T is “small”. (|Sn(T )| < 2ℵ0 for all n.)

Part of proof.
(1) ⇒ (2) ⇒ (3) uses only ideas we have seen.
(3) implies that, for any model M of T , and any finite subset A ⊆ M,
(|A| = m, say), then |SM

n (A)| ≤ |Sm+n(T )| ≤ ω.
Idea for the rest. Let M0 = M. Find a countable elementary extension
Mi+1 ≻ Mi that realizes the countable set of 1-types over finite subsets of
Mi. Let M̂ be the union of the Mi. 2

Saturated models 15 / 19



Extensions to higher cardinalities

Defn. A model M of T is κ-saturated if whenever A ⊆ M satisfies |A| < κ,
then MA realizes all p ∈ SM

1 (A). We say that M is saturated if it is
|M|-saturated.

To discuss this when κ ̸= ω, we need a concept of type for infinitely long
tuples.

Some basic results.
1 κ-saturated = κ+-universal and κ-homogeneous.
2 Formation of ultrapowers increases saturation.
3 An infinite model M satisfying |M| ≤ 2κ has a κ+-saturated elementary

extension of cardinality 2κ.
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Saturated models of ACFp

Theorem. A model K of ACFp is saturated if(f) it contains an algebraically
independent subset of size |K|.

Proof sketch. Let’s explain why C is saturated.
Let A ⊆ C satisfy |A| < |C|.
Let F be an algebraically closed subfield of C containing A and satisfying
|F| < |C|.
By q.e., types over A are determined by ±atomic part.
Any type over A with a “+atomic” part (p(x, a) = 0) is realized in F, hence
in C.
Any complete type over A with only “−atomic” describes an element
transcendental over F. C has such an element. 2.
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Appendix: Ultrapowers are somewhat saturated

Let A be a structure and B ⊆ A be a subset. Let κ = ∥LB∥. Let I = Pfin(κ)
be the set of finite subsets of κ.
I = Pfin(κ) is directed by inclusion. The tail ends of this directed set form a
proper filter on I , which can be extended to an ultrafilter U on I . Let’s outline
why

∏
U A realizes every type in SA

1 (B).
Accept for now that every p ∈ SA

1 (B) has cardinality κ = ∥LB∥, and choose
a bijection βp : κ → p. There is an induced bijection from I = Pfin(κ) to
Pfin(p), which we also call βp. Thus, for each i ∈ I , there is assigned a set
βp(i), which is a finite subset of p.
Since p is consistent with Th(AB), for each i there is an element ai ∈ A that
satisfies all formulas in the finite set βp(i). Let a ∈ AI be the tuple satisfying
(a)i = ai for all i. For each φ(x) ∈ p we have that Jφ[a]K contains the tail
end in I = Pfin(κ) generated by β−1

p (φ(x)). This tail end belongs to U , hence∏
U A |= φ[a]. This is true for any φ(x) ∈ p, so a realizes p in

∏
U A.

Similarly, every q ∈ SA
1 (B) is realized in the same ultrapower. It is worth

recording that |
∏

U A| = |A|∥LB∥.
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Appendix to the appendix

On the previous slide it was claimed that all types in SA
1 (B) have the same

cardinality, namely κ = ∥LB∥. This fact was used so that we could
correspond finite subsets of any p ∈ SA

1 (B) to finite subsets of the fixed set κ.
This was needed so that a fixed ultrapower was able to realize all types in
SA

1 (B) simultaneously.
One can prove that all types in SA

1 (B) have size κ = ∥LB∥ as follows.
1 If p ∈ SA

1 (B), then p ⊆ LB , so |p| ≤ ∥LB∥ = κ.
2 The existence of the map φ(x) 7→ (∀x1) · · · (∀xk)φ(x), which assigns to

a formula its universal closure, is a finite-to-one map from LB to a subset
of the LB-sentences. This establishes that the set of LB-sentences has
size at least κ. (I am basing this claim on the fact that if X and Y are
infinite and there is a finite-to-one map from X into Y , then |X| ≤ |Y |.)

3 Any p ∈ SA
1 (B) contains half of the LB-sentences, hence p has

cardinality at least 1
2κ = κ.
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