Roundup: Ultraproducts

Compactness Theorem.

Compactness Theorem. If $\Sigma \models \sigma$,

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$).

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$). However, we only gave a sketch of a proof for the Completeness Theorem.

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$). However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts.

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$). However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$). However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Theorem.

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$). However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Theorem. If every finite subset of Σ has a model,

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_0 \models \sigma$ for some finite subset $\Sigma_0 \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma$). However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Theorem. If every finite subset of Σ has a model, then Σ has a model.

Proof.

Proof. Assume that every finite subset of Σ has a model.

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ ,

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ , and for $i \in I$ let \mathbf{A}_i be a model for the sentences in i.

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ , and for $i \in I$ let \mathbf{A}_i be a model for the sentences in i. I is directed by inclusion,

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ , and for $i \in I$ let \mathbf{A}_i be a model for the sentences in i. I is directed by inclusion, so there is an ultrafilter \mathcal{U} on I containing each 'tail end' [i).

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ , and for $i \in I$ let \mathbf{A}_i be a model for the sentences in i. I is directed by inclusion, so there is an ultrafilter \mathcal{U} on I containing each 'tail end' [i). It now follows from Łos's Theorem that $\prod_{\mathcal{U}} \mathbf{A}_i$ is a model of Σ .

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ , and for $i \in I$ let \mathbf{A}_i be a model for the sentences in i. I is directed by inclusion, so there is an ultrafilter \mathcal{U} on I containing each 'tail end' [i). It now follows from Łos's Theorem that $\prod_{\mathcal{U}} \mathbf{A}_i$ is a model of Σ . \Box

An ultraproduct where all factors are equal

An ultraproduct where all factors are equal (to \mathbf{A})

An ultraproduct where all factors are equal (to \mathbf{A}) is called an **ultrapower**

An ultraproduct where all factors are equal (to \mathbf{A}) is called an **ultrapower** (of \mathbf{A}).

An ultraproduct where all factors are equal (to \mathbf{A}) is called an **ultrapower** (of \mathbf{A}).

It is not hard to see that the composite

An ultraproduct where all factors are equal (to A) is called an **ultrapower** (of A).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding.

An ultraproduct where all factors are equal (to A) is called an **ultrapower** (of A).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence A is isomorphic to a submodel of $\prod_{\mathcal{U}} A$.

An ultraproduct where all factors are equal (to A) is called an **ultrapower** (of A).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence A is isomorphic to a submodel of $\prod_{\mathcal{U}} A$. Also,

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence A is isomorphic to a submodel of $\prod_{\mathcal{U}} A$. Also, by Los's Theorem,

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence A is isomorphic to a submodel of $\prod_{\mathcal{U}} A$. Also, by Łos's Theorem, $A \equiv \prod_{\mathcal{U}} A$.

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence A is isomorphic to a submodel of $\prod_{\mathcal{U}} A$. Also, by Los's Theorem, $A \equiv \prod_{\mathcal{U}} A$. Still more is true:

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition.

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Los's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e \colon \mathbf{A} \to \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[\bar{e(a)}]$.

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e : \mathbf{A} \to \mathbf{B}$ is **elementary** if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[\bar{e}(\bar{a})]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B} ,

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Los's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e : \mathbf{A} \to \mathbf{B}$ is **elementary** if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[\bar{e}(\bar{a})]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B} , \mathbf{B} is an elementary extension of \mathbf{A} ,

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Los's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e : \mathbf{A} \to \mathbf{B}$ is **elementary** if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e(\bar{a})]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B} , \mathbf{B} is an elementary extension of \mathbf{A} , and we write $\mathbf{A} \prec \mathbf{B}$ or $\mathbf{A} \preceq \mathbf{B}$.

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e : \mathbf{A} \to \mathbf{B}$ is **elementary** if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[\bar{e}(\bar{a})]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B} , \mathbf{B} is an elementary extension of \mathbf{A} , and we write $\mathbf{A} \prec \mathbf{B}$ or $\mathbf{A} \preceq \mathbf{B}$. We write $\mathbf{S}_{\preceq}(\mathcal{K})$ for the class of elementary submodels of members of \mathcal{K}

An ultraproduct where all factors are equal (to **A**) is called an **ultrapower** (of **A**).

It is not hard to see that the composite

$$\mathbf{A} \stackrel{\delta}{\longrightarrow} \prod_{I} \mathbf{A} \stackrel{\nu}{\longrightarrow} \prod_{\mathcal{U}} \mathbf{A}$$

is an embedding. Hence **A** is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Los's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of **A** into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \to \mathbf{B}$ is **elementary** if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[\bar{e}(\bar{a})]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B} , \mathbf{B} is an elementary extension of \mathbf{A} , and we write $\mathbf{A} \prec \mathbf{B}$ or $\mathbf{A} \preceq \mathbf{B}$. We write $\mathbf{S}_{\preceq}(\mathcal{K})$ for the class of elementary submodels of members of \mathcal{K} (up to isomorphism).

Remark 1.

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$,

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension,

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

() \mathbb{R} is not an elementary subfield of \mathbb{C} .

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

() \mathbb{R} is not an elementary subfield of \mathbb{C} .

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

- **()** \mathbb{R} is not an elementary subfield of \mathbb{C} .
- **2** The group embedding $e \colon \mathbb{Z} \to \mathbb{Z} \colon n \mapsto 2n$ is not elementary.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

- **()** \mathbb{R} is not an elementary subfield of \mathbb{C} .
- **2** The group embedding $e \colon \mathbb{Z} \to \mathbb{Z} \colon n \mapsto 2n$ is not elementary.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

- **()** \mathbb{R} is not an elementary subfield of \mathbb{C} .
- **2** The group embedding $e \colon \mathbb{Z} \to \mathbb{Z} \colon n \mapsto 2n$ is not elementary.
- So The poset embedding e: ⟨ℕ; ≤⟩ → ⟨ℕ; ≤⟩: x ↦ x + 1 is not elementary.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

- **()** \mathbb{R} is not an elementary subfield of \mathbb{C} .
- **2** The group embedding $e \colon \mathbb{Z} \to \mathbb{Z} \colon n \mapsto 2n$ is not elementary.
- So The poset embedding e: ⟨ℕ; ≤⟩ → ⟨ℕ; ≤⟩: x ↦ x + 1 is not elementary.

Remark 1. $\mathbf{A} \leq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \leq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

- **()** \mathbb{R} is not an elementary subfield of \mathbb{C} .
- **2** The group embedding $e \colon \mathbb{Z} \to \mathbb{Z} \colon n \mapsto 2n$ is not elementary.
- So The poset embedding e: ⟨ℕ; ≤⟩ → ⟨ℕ; ≤⟩: x ↦ x + 1 is not elementary.

Los's Theorem guarantees that the diagonal embedding $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding.

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News.

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$,

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News.

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem)

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If A infinite and \mathcal{U} is a regular ultrafilter on I,

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If A infinite and \mathcal{U} is a regular ultrafilter on I, then $|\prod_{\mathcal{U}} \mathbf{A}| = |A|^{|I|}$.

Controlling the size of an ultrapower

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If A infinite and \mathcal{U} is a **regular** ultrafilter on *I*, then $|\prod_{\mathcal{U}} \mathbf{A}| = |A|^{|I|}$. (See Feb 16 handout.)

Controlling the size of an ultrapower

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If **A** infinite and \mathcal{U} is a **regular** ultrafilter on *I*, then $|\prod_{\mathcal{U}} \mathbf{A}| = |A|^{|I|}$. (See Feb 16 handout.) Moreover, it is known that every infinite set *I* supports a regular ultrafilter.

Controlling the size of an ultrapower

Los's Theorem guarantees that the diagonal embedding $\Delta : \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ -complete and $|A| < \kappa$, then $\Delta \colon \mathbf{A} \to \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If A infinite and \mathcal{U} is a **regular** ultrafilter on *I*, then $|\prod_{\mathcal{U}} \mathbf{A}| = |A|^{|I|}$. (See Feb 16 handout.) Moreover, it is known that every infinite set *I* supports a regular ultrafilter.

Thus, ultrapowers may be used to construct arbitrarily large elementary extensions of infinite structures.

Keisler-Shelah Isomorphism Theorem.

Keisler-Shelah Isomorphism Theorem. (1971)

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

In symbols,

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

In symbols,

 $\mathbf{A} \equiv \mathbf{B}$

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

In symbols,

$$\mathbf{A}\equiv \mathbf{B}\quad\Leftrightarrow\quad$$

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

In symbols,

$$\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad (\exists \mathcal{U})(\exists \mathcal{V}) \left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right).$$

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

In symbols,

$$\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad (\exists \mathcal{U})(\exists \mathcal{V}) \left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right).$$

The backward implication is easy,

Keisler-Shelah Isomorphism Theorem. (1971) *L*-structures **A** and **B** are elementarily equivalent if and only if **A** and **B** have isomorphic ultrapowers.

In symbols,

$$\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad (\exists \mathcal{U})(\exists \mathcal{V}) \left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right).$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if A and B have isomorphic ultrapowers.

In symbols,

$$\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad (\exists \mathcal{U})(\exists \mathcal{V}) \left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right).$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$ and isomorphism is a finer equivalence relation than elemntary equivalence.

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if A and B have isomorphic ultrapowers.

In symbols,

$$\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad (\exists \mathcal{U})(\exists \mathcal{V}) \left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right).$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$ and isomorphism is a finer equivalence relation than elemntary equivalence. For the forward direction, see

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if A and B have isomorphic ultrapowers.

In symbols,

$$\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad (\exists \mathcal{U})(\exists \mathcal{V}) \left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right).$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$ and isomorphism is a finer equivalence relation than elemntary equivalence. For the forward direction, see

Shelah, Saharon Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. 10 (1971), 224-233.

Theorem.

Theorem. Let \mathcal{K} be a class of *L*-structures.

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

 $\ 2 \ \ \mathcal{J} = \mathcal{K}^{\perp \perp} = \mathrm{Mod}(\mathrm{Th}(\mathcal{K})).$

Theorem. Let \mathcal{K} be a class of *L*-structures. The following are equivalent.

• \mathcal{J} is the elementary class generated by \mathcal{K} .

 $\ 2 \ \ \mathcal{J} = \mathcal{K}^{\perp \perp} = \mathrm{Mod}(\mathrm{Th}(\mathcal{K})).$

- \mathcal{J} is the elementary class generated by \mathcal{K} .
- $\ 2 \ \ \mathcal{J} = \mathcal{K}^{\perp \perp} = \mathrm{Mod}(\mathrm{Th}(\mathcal{K})).$
- (Keisler-Shelah)

- \mathcal{J} is the elementary class generated by \mathcal{K} .
- $\ 2 \ \ \mathcal{J} = \mathcal{K}^{\perp \perp} = \mathrm{Mod}(\mathrm{Th}(\mathcal{K})).$
- (Keisler-Shelah)

- \mathcal{J} is the elementary class generated by \mathcal{K} .
- $\ 2 \ \ \mathcal{J} = \mathcal{K}^{\perp \perp} = \mathrm{Mod}(\mathrm{Th}(\mathcal{K})).$
- (Keisler-Shelah) $\mathcal{J} = \sqrt[u]{\mathsf{P}_u(\mathcal{K})}$.

- \mathcal{J} is the elementary class generated by \mathcal{K} .
- $\ 2 \ \ \mathcal{J} = \mathcal{K}^{\perp \perp} = \mathrm{Mod}(\mathrm{Th}(\mathcal{K})).$
- (Keisler-Shelah) $\mathcal{J} = \sqrt[u]{\mathsf{P}_u(\mathcal{K})}$. ($\sqrt[u]{}$ = closure under 'ultraroots'.)