Roundup: Ultraproducts

Ultraproduct proof of the Compactness Theorem

Ultraproduct proof of the Compactness Theorem

Compactness Theorem.

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$,

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$.

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$. However, we only gave a sketch of a proof for the Completeness Theorem.

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$. However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts.

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$. However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$. However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Theorem.

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$. However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Theorem. If every finite subset of Σ has a model,

Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If $\Sigma \models \sigma$, then $\Sigma_{0} \models \sigma$ for some finite subset $\Sigma_{0} \subseteq \Sigma$.

We derived this as an easy corollary to the Completeness Theorem ($\Sigma \models \sigma$ iff $\Sigma \vdash \sigma)$. However, we only gave a sketch of a proof for the Completeness Theorem. We can give a more complete proof of the Compactness Theorem using ultraproducts. It suffices to prove it in the following form:

Theorem. If every finite subset of Σ has a model, then Σ has a model.

Ultraproduct proof of the Compactness Theorem

Ultraproduct proof of the Compactness Theorem

Proof.

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model.

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ,

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ, and for $i \in I$ let \mathbf{A}_{i} be a model for the sentences in i.

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ, and for $i \in I$ let \mathbf{A}_{i} be a model for the sentences in i. I is directed by inclusion,

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ, and for $i \in I$ let \mathbf{A}_{i} be a model for the sentences in i. I is directed by inclusion, so there is an ultrafilter \mathcal{U} on I containing each 'tail end' $[i)$.

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ, and for $i \in I$ let \mathbf{A}_{i} be a model for the sentences in i. I is directed by inclusion, so there is an ultrafilter \mathcal{U} on I containing each 'tail end' $[i)$. It now follows from Łos's Theorem that $\prod_{\mathcal{U}} \mathbf{A}_{i}$ is a model of Σ.

Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of finite subsets of Σ, and for $i \in I$ let \mathbf{A}_{i} be a model for the sentences in i. I is directed by inclusion, so there is an ultrafilter \mathcal{U} on I containing each 'tail end' $[i)$. It now follows from Łos's Theorem that $\prod_{\mathcal{U}} \mathbf{A}_{i}$ is a model of Σ. \square

Ultrapowers. Elementary embeddings.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A})

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also,

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem,

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true:

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \rightarrow \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e \bar{e} a)]$.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \rightarrow \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e(a)]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B},

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \rightarrow \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e(a)]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B}, \mathbf{B} is an elementary extension of \mathbf{A},

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \rightarrow \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e(a)]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B}, \mathbf{B} is an elementary extension of \mathbf{A}, and we write $\mathbf{A} \prec \mathbf{B}$ or $\mathbf{A} \preceq \mathbf{B}$.

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\prod_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \rightarrow \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e \overline{(a)}]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B}, \mathbf{B} is an elementary extension of \mathbf{A}, and we write $\mathbf{A} \prec \mathbf{B}$ or $\mathbf{A} \preceq \mathbf{B}$. We write $\mathrm{S}_{\preceq}(\mathcal{K})$ for the class of elementary submodels of members of \mathcal{K}

Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to \mathbf{A}) is called an ultrapower (of A).

It is not hard to see that the composite

$$
\mathbf{A} \xrightarrow{\delta} \prod_{I} \mathbf{A} \xrightarrow{\nu} \prod_{\mathcal{U}} \mathbf{A}
$$

is an embedding. Hence \mathbf{A} is isomorphic to a submodel of $\prod_{\mathcal{U}} \mathbf{A}$. Also, by Łos's Theorem, $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$. Still more is true: the embedding of \mathbf{A} into $\Pi_{\mathcal{U}} \mathbf{A}$ is 'elementary'.

Definition. An embedding $e: \mathbf{A} \rightarrow \mathbf{B}$ is elementary if $\mathbf{A} \models \varphi[\bar{a}]$ iff $\mathbf{B} \models \varphi[e \overline{(a)}]$. If the embedding e is inclusion, we say that \mathbf{A} is an elementary submodel of \mathbf{B}, \mathbf{B} is an elementary extension of \mathbf{A}, and we write $\mathbf{A} \prec \mathbf{B}$ or $\mathbf{A} \preceq \mathbf{B}$. We write $\mathrm{S}_{\preceq}(\mathcal{K})$ for the class of elementary submodels of members of \mathcal{K} (up to isomorphism).

Remarks + Nonexamples

Remarks + Nonexamples

Remark 1.

Remarks + Nonexamples

Remark 1. A $\preceq \mathbf{B}$ implies

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$,

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension,

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.
(2) The group embedding $e: \mathbb{Z} \rightarrow \mathbb{Z}: n \mapsto 2 n$ is not elementary.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.

(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.
(2) The group embedding $e: \mathbb{Z} \rightarrow \mathbb{Z}: n \mapsto 2 n$ is not elementary.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.
(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.
(2) The group embedding $e: \mathbb{Z} \rightarrow \mathbb{Z}: n \mapsto 2 n$ is not elementary.
(3) The poset embedding $e:\langle\mathbb{N} ; \leq\rangle \rightarrow\langle\mathbb{N} ; \leq\rangle: x \mapsto x+1$ is not elementary.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.
(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.
(2) The group embedding $e: \mathbb{Z} \rightarrow \mathbb{Z}: n \mapsto 2 n$ is not elementary.
(3) The poset embedding $e:\langle\mathbb{N} ; \leq\rangle \rightarrow\langle\mathbb{N} ; \leq\rangle: x \mapsto x+1$ is not elementary.

Remarks + Nonexamples

Remark 1. $\mathbf{A} \preceq \mathbf{B}$ implies (i) $\mathbf{A} \leq \mathbf{B}$ and (ii) $\mathbf{A} \equiv \mathbf{B}$, but (i) and (ii) do not imply $\mathbf{A} \preceq \mathbf{B}$.

Remark 2. A finite structure does not have a proper elementary extension, but any infinite structure has proper elementary extensions.

Nonexamples.
(1) \mathbb{R} is not an elementary subfield of \mathbb{C}.
(2) The group embedding $e: \mathbb{Z} \rightarrow \mathbb{Z}: n \mapsto 2 n$ is not elementary.
(3) The poset embedding $e:\langle\mathbb{N} ; \leq\rangle \rightarrow\langle\mathbb{N} ; \leq\rangle: x \mapsto x+1$ is not elementary.

Controlling the size of an ultrapower

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding.

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News.

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$,

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News.

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem)

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If \mathbf{A} infinite and \mathcal{U} is a regular ultrafilter on I,

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If \mathbf{A} infinite and \mathcal{U} is a regular ultrafilter on I, then $\left|\prod_{\mathcal{U}} \mathbf{A}\right|=|A|^{|I|}$.

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If \mathbf{A} infinite and \mathcal{U} is a regular ultrafilter on I, then $\left|\prod_{\mathcal{U}} \mathbf{A}\right|=|A|^{|I|}$. (See Feb 16 handout.)

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If \mathbf{A} infinite and \mathcal{U} is a regular ultrafilter on I, then $\left|\prod_{\mathcal{U}} \mathbf{A}\right|=|A|^{|I|}$. (See Feb 16 handout.) Moreover, it is known that every infinite set I supports a regular ultrafilter.

Controlling the size of an ultrapower

Łos's Theorem guarantees that the diagonal embedding $\Delta: \mathbf{A} \rightarrow \Pi_{\mathcal{U}} \mathbf{A}$ of \mathbf{A} into an ultrapower is an elementary embedding. We can use this to produce large elementary extensions of \mathbf{A} if we can make ultrapowers large.

The Bad News. If \mathcal{U} is κ-complete and $|A|<\kappa$, then $\Delta: \mathbf{A} \rightarrow \prod_{\mathcal{U}} \mathbf{A}$ is surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If \mathbf{A} infinite and \mathcal{U} is a regular ultrafilter on I, then $\left|\prod_{\mathcal{U}} \mathbf{A}\right|=|A|^{|I|}$. (See Feb 16 handout.) Moreover, it is known that every infinite set I supports a regular ultrafilter.

Thus, ultrapowers may be used to construct arbitrarily large elementary extensions of infinite structures.

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem.

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971)

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B}
$$

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow
$$

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad(\exists \mathcal{U})(\exists \mathcal{V})\left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right)
$$

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad(\exists \mathcal{U})(\exists \mathcal{V})\left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right)
$$

The backward implication is easy,

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad(\exists \mathcal{U})(\exists \mathcal{V})\left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right)
$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad(\exists \mathcal{U})(\exists \mathcal{V})\left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right)
$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$ and isomorphism is a finer equivalence relation than elemntary equivalence.

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad(\exists \mathcal{U})(\exists \mathcal{V})\left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right)
$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$ and isomorphism is a finer equivalence relation than elemntary equivalence. For the forward direction, see

Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are elementarily equivalent if and only if \mathbf{A} and \mathbf{B} have isomorphic ultrapowers.

In symbols,

$$
\mathbf{A} \equiv \mathbf{B} \quad \Leftrightarrow \quad(\exists \mathcal{U})(\exists \mathcal{V})\left(\prod_{\mathcal{U}} \mathbf{A} \cong \prod_{\mathcal{V}} \mathbf{B}\right)
$$

The backward implication is easy, since $\mathbf{A} \equiv \prod_{\mathcal{U}} \mathbf{A}$ and $\prod_{\mathcal{V}} \mathbf{B} \equiv \mathbf{B}$ and isomorphism is a finer equivalence relation than elemntary equivalence. For the forward direction, see

Shelah, Saharon
Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. 10 (1971), 224-233.

Characterizing the closure of a class of L-structures

Characterizing the closure of a class of L-structures

Theorem.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}$

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}$

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
(3) $\mathcal{J}=\mathrm{S}_{\preceq} \mathrm{P}_{u}(\mathcal{K})$.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
(3) $\mathcal{J}=\mathrm{S}_{\preceq} \mathrm{P}_{u}(\mathcal{K})$.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
(3) $\mathcal{J}=\mathrm{S}_{\preceq} \mathrm{P}_{u}(\mathcal{K})$.
(9) (Keisler-Shelah)

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
(3) $\mathcal{J}=\mathrm{S}_{\preceq} \mathrm{P}_{u}(\mathcal{K})$.
(9) (Keisler-Shelah)

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
(3) $\mathcal{J}=\mathrm{S}_{\preceq} \mathrm{P}_{u}(\mathcal{K})$.
(9) (Keisler-Shelah) $\mathcal{J}=\sqrt[u]{\mathrm{P}_{u}(\mathcal{K})}$.

Characterizing the closure of a class of L-structures

Theorem. Let \mathcal{K} be a class of L-structures. The following are equivalent.
(1) \mathcal{J} is the elementary class generated by \mathcal{K}.
(2) $\mathcal{J}=\mathcal{K}^{\perp \perp}=\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
(3) $\mathcal{J}=\mathrm{S}_{\preceq} \mathrm{P}_{u}(\mathcal{K})$.
(9) (Keisler-Shelah) $\mathcal{J}=\sqrt[u]{\mathrm{P}_{u}(\mathcal{K})} \cdot(\sqrt[u]{ }=$ closure under 'ultraroots'.)

