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We derived this as an easy corollary to the Completeness Theorem (3 = o iff
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is an embedding. Hence A is isomorphic to a submodel of [];; A. Also, by
Los’s Theorem, A = [[;, A. Still more is true: the embedding of A into
[I;; A is ‘elementary’.

Definition. An embedding e: A — B is elementary if A = ¢[a] iff

B |= ¢[e(a)]. If the embedding e is inclusion, we say that A is an elementary
submodel of B, B is an elementary extension of A, and we write A < B or
A < B. We write S<(K) for the class of elementary submodels of members

of IC (up to isomorphism).
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Los’s Theorem guarantees that the diagonal embedding A: A — [[;; A of A
into an ultrapower is an elementary embedding. We can use this to produce
large elementary extensions of A if we can make ultrapowers large.

The Bad News. If I/ is x-complete and |[A| < k, then A: A — [[,; A is
surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If A infinite and I/ is a
regular ultrafilter on I, then | [T, A| = |A|/!l. (See Feb 16 handout.)
Moreover, it is known that every infinite set I supports a regular ultrafilter.

Thus, ultrapowers may be used to construct arbitrarily large elementary
extensions of infinite structures.
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Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are
elementarily equivalent if and only if A and B have isomorphic ultrapowers.

In symbols,

A=B & (3EU)@EV) <HA%HB> :

u 1%

The backward implication is easy, since A = [[;; A and [[,, B = B and
isomorphism is a finer equivalence relation than elemntary equivalence. For
the forward direction, see

Shelah, Saharon
Every two elementarily equivalent models have isomorphic ultrapowers.
Israel J. Math. 10 (1971), 224-233.
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Theorem. Let /C be a class of L-structures. The following are equivalent.
@ J is the elementary class generated by K.
Q@ J = K+ = Mod(Th(K)).
Q@ J =S<Py(K).

© (Keisler-Shelah) 7 = /P, (K). ( /= closure under “ultraroots’.)
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