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Ultraproduct proof of the Compactness Theorem

Compactness Theorem. If Σ |= σ, then Σ0 |= σ for some finite subset
Σ0 ⊆ Σ.

We derived this as an easy corollary to the Completeness Theorem (Σ |= σ iff
Σ ⊢ σ). However, we only gave a sketch of a proof for the Completeness
Theorem. We can give a more complete proof of the Compactness Theorem
using ultraproducts. It suffices to prove it in the following form:

Theorem. If every finite subset of Σ has a model, then Σ has a model.
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Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof.

Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model.

Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ,

and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i.

I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion,

so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i).

It now follows from Łos’s Theorem that
∏

U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ.

2

Roundup: Ultraproducts 3 / 8



Ultraproduct proof of the Compactness Theorem

Proof. Assume that every finite subset of Σ has a model. Let I be the set of
finite subsets of Σ, and for i ∈ I let Ai be a model for the sentences in i. I is
directed by inclusion, so there is an ultrafilter U on I containing each ‘tail
end’ [i). It now follows from Łos’s Theorem that

∏
U Ai is a model of Σ. 2

Roundup: Ultraproducts 3 / 8



Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to A) is called an ultrapower (of
A).

It is not hard to see that the composite

A δ−→
∏
I

A ν−→
∏
U

A

is an embedding. Hence A is isomorphic to a submodel of
∏

U A. Also, by
Łos’s Theorem, A ≡

∏
U A. Still more is true: the embedding of A into∏

U A is ‘elementary’.

Definition. An embedding e : A → B is elementary if A |= φ[ā] iff
B |= φ[ ¯e(a)]. If the embedding e is inclusion, we say that A is an elementary
submodel of B, B is an elementary extension of A, and we write A ≺ B or
A ⪯ B. We write S⪯(K) for the class of elementary submodels of members
of K (up to isomorphism).
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B |= φ[ ¯e(a)]. If the embedding e is inclusion, we say that A is an elementary
submodel of B, B is an elementary extension of A, and we write A ≺ B or
A ⪯ B. We write S⪯(K) for the class of elementary submodels of members
of K (up to isomorphism).

Roundup: Ultraproducts 4 / 8



Ultrapowers. Elementary embeddings.

An ultraproduct where all factors are equal (to A) is called an ultrapower (of
A).

It is not hard to see that the composite

A δ−→
∏
I

A ν−→
∏
U

A

is an embedding. Hence A is isomorphic to a submodel of
∏

U A. Also,

by
Łos’s Theorem, A ≡

∏
U A. Still more is true: the embedding of A into∏

U A is ‘elementary’.

Definition. An embedding e : A → B is elementary if A |= φ[ā] iff
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Remarks + Nonexamples

Remark 1. A ⪯ B implies (i) A ≤ B and (ii) A ≡ B, but (i) and (ii) do not
imply A ⪯ B.

Remark 2. A finite structure does not have a proper elementary extension, but
any infinite structure has proper elementary extensions.

Nonexamples.

1 R is not an elementary subfield of C.

2 The group embedding e : Z → Z : n 7→ 2n is not elementary.

3 The poset embedding e : ⟨N; ≤⟩ → ⟨N; ≤⟩ : x 7→ x + 1 is not
elementary.
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Controlling the size of an ultrapower

Łos’s Theorem guarantees that the diagonal embedding ∆: A →
∏

U A of A
into an ultrapower is an elementary embedding. We can use this to produce
large elementary extensions of A if we can make ultrapowers large.

The Bad News. If U is κ-complete and |A| < κ, then ∆: A →
∏

U A is
surjective (in fact, an isomorphism).

The Good News. (Frayne-Morel-Scott Theorem) If A infinite and U is a
regular ultrafilter on I , then |

∏
U A| = |A||I|. (See Feb 16 handout.)

Moreover, it is known that every infinite set I supports a regular ultrafilter.

Thus, ultrapowers may be used to construct arbitrarily large elementary
extensions of infinite structures.
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Keisler-Shelah Isomorphism Theorem

Keisler-Shelah Isomorphism Theorem. (1971) L-structures A and B are
elementarily equivalent if and only if A and B have isomorphic ultrapowers.

In symbols,

A ≡ B ⇔ (∃U)(∃V)
(∏

U
A ∼=

∏
V

B
)

.

The backward implication is easy, since A ≡
∏

U A and
∏

V B ≡ B and
isomorphism is a finer equivalence relation than elemntary equivalence. For
the forward direction, see

Shelah, Saharon
Every two elementarily equivalent models have isomorphic ultrapowers.
Israel J. Math. 10 (1971), 224-233.
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Shelah, Saharon
Every two elementarily equivalent models have isomorphic ultrapowers.
Israel J. Math. 10 (1971), 224-233.
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Characterizing the closure of a class of L-structures

Theorem. Let K be a class of L-structures. The following are equivalent.

1 J is the elementary class generated by K.

2 J = K⊥⊥ = Mod(Th(K)).

3 J = S⪯Pu(K).

4 (Keisler-Shelah) J = u
√

Pu(K). ( u
√ = closure under ‘ultraroots’.)
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