Łos's Theorem.

Our goal is to prove Łos's Theorem, which asserts that a formula is satisfied by a tuple in an ultraproduct iff it is satisfied in almost every coordinate modulo \mathcal{U}. In order to compare satisfaction in the ultraproduct with satisfaction in a coordinate structure we refer the following diagram:

Here v is a valuation in the product $\prod_{i \in I} \mathbb{A}_{i}, n$ is the natural quotient map onto the ultraproduct \mathbb{B}, and π_{j} is the j-th coordinate projection. Since n and π_{j} are surjective, any valuation in \mathbb{B} or \mathbb{A}_{j} factors through n or π_{j} respectively. Thus we can compare valuations in \mathbb{B} and \mathbb{A}_{j} via valuations in $\prod_{i \in I} \mathbb{A}_{i}$.

Theorem 1. (Eos's Theorem) Let $\left\{\mathbb{A}_{i} \mid i \in I\right\}$ be a set of \mathcal{L}-structures and let \mathcal{U} be an ultrafilter on I. Let $\mathbb{B}=\prod_{\mathcal{U}} \mathbb{A}_{i}$ be the ultraproduct. If $v: X \rightarrow \prod_{i \in I} A_{i}$ is a valuation, then for every formula $\varphi(\bar{x})$ it is the case that

$$
\mathbb{B} \models \varphi[n \circ v] \quad \text { iff } \quad\left\{i \in I \mid \mathbb{A}_{i} \models \varphi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} .
$$

Proof. The displayed line in the theorem statement is proved by induction on the complexity of φ, which we may assume is built up from atomic formulas using \neg, \wedge, \exists.

Claim 2. (Terms) For any term $t, t^{\mathbb{B}}[n \circ v]=\left[\left\langle t^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{\mathcal{U}}}$.

$$
\text { - }\left(t=x_{k}\right)
$$

$t^{\mathbb{B}}[n \circ v]=x_{k}[n \circ v]=n \circ v\left(x_{k}\right)=\left[v\left(x_{k}\right)\right]_{\theta_{\mathcal{U}}}=\left[\left\langle x_{k}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{\mathcal{U}}}=\left[\left\langle t^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{\mathcal{u}}}$

- $(t=c)$
$t^{\mathbb{B}}[n \circ v]=c^{\mathbb{B}}[n \circ v]=c^{\mathbb{B}}=\left[\left\langle c^{\mathbb{A}_{i}} \mid i \in I\right\rangle\right]_{\theta_{u}}=\left[\left\langle c^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}}=\left[\left\langle t^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}}$
- $\left(t=F\left(t_{1}, \ldots, t_{m}\right)\right)$
$t^{\mathbb{B}}[n \circ v]=F^{\mathbb{B}}\left(t_{1}^{\mathbb{B}}[n \circ v], \ldots, t_{m}^{\mathbb{B}}[n \circ v]\right)=F^{\mathbb{B}}\left(\left[\left\langle t_{1}^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}}, \ldots,\left[\left\langle t_{m}^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}}\right)$ $=\left[\left\langle F^{\mathbb{A}_{i}}\left(t_{1}^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right], \ldots, t_{m}^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right]\right) \mid i \in I\right\rangle\right]_{\theta_{u}}=\left[\left\langle t^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}}$

Claim 3. (Atomic formulas)

- $(s=t)$

$$
\begin{aligned}
\mathbb{B} \models(s=t)[n \circ v] & \leftrightarrow s^{\mathbb{B}}[n \circ v]=t^{\mathbb{B}}[n \circ v] \\
& \leftrightarrow\left[\left\langle s^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}}=\left[\left\langle t^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right] \mid i \in I\right\rangle\right]_{\theta_{u}} \\
& \leftrightarrow\left\{i \in I \mid s^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right]=t^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} \\
& \leftrightarrow\left\{i \in I \mid \mathbb{A}_{i} \models(s=t)\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U}
\end{aligned}
$$

- $\left(R\left(t_{1}, \ldots, t_{m}\right)\right)$

$$
\begin{aligned}
\mathbb{B} \models R\left(t_{1}, \ldots, t_{m}\right)[n \circ v] & \stackrel{\leftrightarrow}{l}\left(t_{1}^{\mathbb{B}}[n \circ v], \ldots, t_{m}^{\mathbb{B}}[n \circ v]\right) \in R^{\mathbb{B}} \\
& \stackrel{\text { def }}{\leftrightarrow}\left\{i \in I \mid\left(t_{1}^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right], \ldots, t_{m}^{\mathbb{A}_{i}}\left[\pi_{i} \circ v\right]\right) \in R^{\mathbb{A}_{i}}\right\} \in \mathcal{U} \\
& \leftrightarrow\left\{i \in I \mid \mathbf{A}_{i} \models R\left(t_{1}, \ldots, t_{m}\right)\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U}
\end{aligned}
$$

Claim 4. (Connectives)

- (\neg)

$$
\begin{aligned}
\mathbb{B} \models \neg \varphi[n \circ v] & \leftrightarrow \mathbb{B} \notin \varphi[n \circ v] \\
& \leftrightarrow\left\{i \in I \mid \mathbb{A}_{i} \models \varphi\left[\pi_{i} \circ v\right]\right\} \notin \mathcal{U} \\
& \leftrightarrow I \backslash\left\{i \in I \mid \mathbb{A}_{i} \models \varphi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} \\
& \leftrightarrow\left\{i \in I \mid \mathbb{A}_{i} \models \neg \varphi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U}
\end{aligned}
$$

- (\wedge)

$$
\begin{aligned}
\mathbb{B} \models(\chi \wedge \varphi)[n \circ v] & \leftrightarrow \mathbb{B} \models \chi[n \circ v] \text { and } \mathbb{B} \models \varphi[n \circ v] \\
& \leftrightarrow\left\{i \in I \mid \mathbb{A}_{i}=\chi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} \text { and }\left\{i \in I \mid \mathbb{A}_{i} \models \varphi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} \\
& \leftrightarrow\left\{i \in I \mid \mathbb{A}_{i}=\chi\left[\pi_{i} \circ v\right]\right\} \cap\left\{i \in I \mid \mathbb{A}_{i} \models \varphi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} \\
& \leftrightarrow\left\{i \in I \mid \mathbb{A}_{i} \models(\chi \wedge \varphi)\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U}
\end{aligned}
$$

Claim 5. (\exists)

$[\Rightarrow]$

$$
\begin{aligned}
\mathbb{B} \models \exists x_{k} \varphi[n \circ v] & \longrightarrow \text { there is a valuation } v^{\prime} \equiv_{k} v \text { such that } \mathbb{B} \models \varphi\left[n \circ v^{\prime}\right] \\
& \longrightarrow\left\{i \in I \mid \mathbb{A}_{i}=\varphi\left[\pi_{i} \circ v^{\prime}\right]\right\} \in \mathcal{U} \\
& \longrightarrow\left\{i \in I \mid \mathbb{A}_{i} \models \exists x_{k} \varphi\left[\pi_{i} \circ v\right]\right\} \in \mathcal{U} \quad \text { (since } \pi_{i} \circ v \equiv_{k} \pi_{i} \circ v^{\prime} \text {) }
\end{aligned}
$$

$[\Leftarrow]$ Assume that $\left\{i \in I \mid \mathbb{A}_{i} \models \exists x_{k} \varphi\left[\pi_{i} \circ v\right]\right\}=U \in \mathcal{U}$. For each $i \in U$ pick a valuation $w_{i} \equiv_{k} \pi_{i} \circ v$ such that $\mathbb{A}_{i} \models \varphi\left[w_{i}\right]$. Choose any valuation $v^{\prime}: X \rightarrow \prod \mathbb{A}_{i}$ such that $v^{\prime} \equiv_{k} v$ and $\pi_{i} \circ v^{\prime}=w_{i}$ when $i \in U$. Then $\left\{i \in I \mid \mathbb{A}_{i} \models \varphi\left[\pi_{i} \circ v^{\prime}\right]\right\}$ contains U, so $\mathbb{B} \models \varphi\left[n \circ v^{\prime}\right]$ by induction, so $\mathbb{B} \models \exists x_{k} \varphi[n \circ v]$.

