Łos's Theorem.

Our goal is to prove Łos's Theorem, which asserts that a formula is satisfied by a tuple in an ultraproduct iff it is satisfied in almost every coordinate modulo \mathcal{U} . In order to compare satisfaction in the ultraproduct with satisfaction in a coordinate structure we refer the following diagram:

$$X = \{x_1, x_2, \ldots\} \xrightarrow{v} \prod_{i \in I} \mathbb{A}_i \xrightarrow{n} \prod_{\mathcal{U}} \mathbb{A}_i = \mathbb{B}$$

$$\downarrow^{\pi_j}$$

$$\mathbb{A}_j$$

Here v is a valuation in the product $\prod_{i\in I} \mathbb{A}_i$, n is the natural quotient map onto the ultraproduct \mathbb{B} , and π_j is the j-th coordinate projection. Since n and π_j are surjective, any valuation in \mathbb{B} or \mathbb{A}_j factors through n or π_j respectively. Thus we can compare valuations in \mathbb{B} and \mathbb{A}_j via valuations in $\prod_{i\in I} \mathbb{A}_i$.

Theorem 1. (Los's Theorem) Let $\{A_i \mid i \in I\}$ be a set of \mathcal{L} -structures and let \mathcal{U} be an ultrafilter on I. Let $\mathbb{B} = \prod_{\mathcal{U}} A_i$ be the ultraproduct. If $v \colon X \to \prod_{i \in I} A_i$ is a valuation, then for every formula $\varphi(\bar{x})$ it is the case that

$$\mathbb{B} \models \varphi[n \circ v] \quad \textit{iff} \quad \{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v]\} \in \mathcal{U}.$$

Proof. The displayed line in the theorem statement is proved by induction on the complexity of φ , which we may assume is built up from atomic formulas using \neg , \wedge , \exists .

Claim 2. (Terms) For any term t, $t^{\mathbb{B}}[n \circ v] = [\langle t^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}}$.

$$\bullet$$
 $(t=x_k)$

$$t^{\mathbb{B}}[n \circ v] = x_k[n \circ v] = n \circ v(x_k) = [v(x_k)]_{\theta_{\mathcal{U}}} = [\langle x_k[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}} = [\langle t^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}}$$

$$\bullet \ (t=c)$$

$$t^{\mathbb{B}}[n \circ v] = c^{\mathbb{B}}[n \circ v] = c^{\mathbb{B}} = [\langle c^{\mathbb{A}_i} \mid i \in I \rangle]_{\theta_{IJ}} = [\langle c^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{IJ}} = [\langle t^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{IJ}}$$

$$\bullet \ (t = F(t_1, \dots, t_m))$$

$$t^{\mathbb{B}}[n \circ v] = F^{\mathbb{B}}(t_1^{\mathbb{B}}[n \circ v], \dots, t_m^{\mathbb{B}}[n \circ v]) = F^{\mathbb{B}}([\langle t_1^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}}, \dots, [\langle t_m^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}})$$

$$= [\langle F^{\mathbb{A}_i}(t_1^{\mathbb{A}_i}[\pi_i \circ v], \dots, t_m^{\mathbb{A}_i}[\pi_i \circ v]) \mid i \in I \rangle]_{\theta_{\mathcal{U}}} = [\langle t^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}}$$

Claim 3. (Atomic formulas)

•
$$(s=t)$$

$$\mathbb{B} \models (s=t)[n \circ v] \quad \leftrightarrow s^{\mathbb{B}}[n \circ v] = t^{\mathbb{B}}[n \circ v]$$

$$\leftrightarrow [\langle s^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}} = [\langle t^{\mathbb{A}_i}[\pi_i \circ v] \mid i \in I \rangle]_{\theta_{\mathcal{U}}}$$

$$\leftrightarrow \{i \in I \mid s^{\mathbb{A}_i}[\pi_i \circ v] = t^{\mathbb{A}_i}[\pi_i \circ v]\} \in \mathcal{U}$$

$$\leftrightarrow \{i \in I \mid \mathbb{A}_i \models (s=t)[\pi_i \circ v]\} \in \mathcal{U}$$

 $\bullet \ (R(t_1,\ldots,t_m))$

$$\mathbb{B} \models R(t_1, \dots, t_m)[n \circ v] \quad \leftrightarrow \quad (t_1^{\mathbb{B}}[n \circ v], \dots, t_m^{\mathbb{B}}[n \circ v]) \in R^{\mathbb{B}}$$

$$\stackrel{\text{def}}{\leftrightarrow} \{ i \in I \mid (t_1^{\mathbb{A}_i}[\pi_i \circ v], \dots, t_m^{\mathbb{A}_i}[\pi_i \circ v]) \in R^{\mathbb{A}_i} \} \in \mathcal{U}$$

$$\leftrightarrow \{ i \in I \mid \mathbf{A}_i \models R(t_1, \dots, t_m)[\pi_i \circ v] \} \in \mathcal{U}$$

Claim 4. (Connectives)

• (
$$\neg$$
)
$$\mathbb{B} \models \neg \varphi[n \circ v] \quad \leftrightarrow \quad \mathbb{B} \not\models \varphi[n \circ v] \\ \leftrightarrow \quad \{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v]\} \notin \mathcal{U} \\ \leftrightarrow \quad I \setminus \{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v]\} \in \mathcal{U} \\ \leftrightarrow \quad \{i \in I \mid \mathbb{A}_i \models \neg \varphi[\pi_i \circ v]\} \in \mathcal{U}$$
• (\land)

$$\mathbb{B} \models (\chi \land \varphi)[n \circ v] \quad \leftrightarrow \quad \mathbb{B} \models \chi[n \circ v] \text{ and } \mathbb{B} \models \varphi[n \circ v]$$

$$\leftrightarrow \quad \{i \in I \mid \mathbb{A}_i \models \chi[\pi_i \circ v]\} \in \mathcal{U} \text{ and } \{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v]\} \in \mathcal{U}$$

$$\leftrightarrow \quad \{i \in I \mid \mathbb{A}_i \models \chi[\pi_i \circ v]\} \cap \{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v]\} \in \mathcal{U}$$

$$\leftrightarrow \quad \{i \in I \mid \mathbb{A}_i \models (\chi \land \varphi)[\pi_i \circ v]\} \in \mathcal{U}$$

Claim 5. (\exists)

 $[\Rightarrow]$

$$\mathbb{B} \models \exists x_k \varphi[n \circ v] \longrightarrow \text{ there is a valuation } v' \equiv_k v \text{ such that } \mathbb{B} \models \varphi[n \circ v']$$

$$\longrightarrow \{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v']\} \in \mathcal{U}$$

$$\longrightarrow \{i \in I \mid \mathbb{A}_i \models \exists x_k \varphi[\pi_i \circ v]\} \in \mathcal{U} \text{ (since } \pi_i \circ v \equiv_k \pi_i \circ v')$$

 $[\Leftarrow]$ Assume that $\{i \in I \mid \mathbb{A}_i \models \exists x_k \varphi[\pi_i \circ v]\} = U \in \mathcal{U}$. For each $i \in U$ pick a valuation $w_i \equiv_k \pi_i \circ v$ such that $\mathbb{A}_i \models \varphi[w_i]$. Choose any valuation $v' \colon X \to \prod \mathbb{A}_i$ such that $v' \equiv_k v$ and $\pi_i \circ v' = w_i$ when $i \in U$. Then $\{i \in I \mid \mathbb{A}_i \models \varphi[\pi_i \circ v']\}$ contains U, so $\mathbb{B} \models \exists x_k \varphi[n \circ v]$.