The lattice of *L*-theories, and its spectrum.

The Galois connection induced by \models yields a closure operator on the class of *L*-sentences and a closure operator on the class of *L*-structures. A Galois-closed set of sentences is called a (closed) theory, while a Galois-closed set of structures is called an *elementary class*. The collection of *L*-theories forms a lattice under inclusion, and the collection of elementary classes also forms a lattice under inclusion; these lattices are dual to each other, and the Galois connection determines a dual isomorphism between them $(T \mapsto T^{\perp} \text{ and } \mathcal{K} \mapsto \mathcal{K}^{\perp})$.

The lattice of theories, \mathcal{L}_{Th} has these properties:

- (1) It is algebraic. (It is *complete* and *compactly generated*. Completeness means that the meet or join of any subset of \mathcal{L}_{Th} exists. Compact generation means that every element is the join of the compact elements below it.)
- (2) It is distributive. $(x \land (y \lor z) = (x \land y) \lor (x \land z).)$
- (3) It is coatomistic. (Every element is the meet of coatoms.)
- (4) Its compact elements are complemented. (If $x \in \mathcal{L}_{Th}$ is compact, then there is a compact element y such that $x \wedge y = 0$ and $x \vee y = 1$.)

The important facts to note are that

- (I) Any algebraic, distributive lattice is a *frame*. (I.e., satisfies $x \land (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} x \land y_i$ for any I.)
- (II) A coatomistic frame is *spatial*. (That is, it is isomorphic to the lattice of open sets of a topological space.)
- (III) An algebraic, spatial frame is isomorphic to the lattice of open sets of a topological space which has a basis of compact open sets. If, in addition, the compact elements of the frame are complemented, then the space has a basis of clopen sets.

Thus, the lattice \mathcal{L}_{Th} encodes a topological space, which is called the *spectrum* of the frame.

- Points of the spectrum = the meet irreducible elements of \mathcal{L}_{Th} = the complete L-theories.
- Closed sets of the spectrum have the form

$$V(\Sigma) = \{T \text{ complete } \mid \Sigma \subseteq T\}$$

where Σ is a set of *L*-sentences.

• Basic clopen sets of the spectrum = sets of the form

$$O_{\sigma} = \{T \text{ complete } | \sigma \in T\} = V(\sigma) = V(\neg \sigma)^c$$

where σ is an *L*-sentence

We will call the spectrum of \mathcal{L}_{Th} the "space of complete L-theories".

Theorem 1. The space of complete L-theories is

- compact,
- Hausdorff, and
- totally disconnected.

I.e., it is a Stone space.

Glossary of new terms.

- (1) **lattice.** The word "lattice" is applied to an algebraic structure $\langle L; \lor, \land \rangle$ with 2 binary operations, satisfying axioms that express that there is a partial order \leq on L such that $x \lor y$ is the least upper bound (join) of x and y with respect to \leq and $x \land y$ is the greatest lower bound (meet) of x and y with respect to \leq . The word "lattice" is also applied to the corresponding relational structure $\langle L; \leq \rangle$. The definitions guarantee that $x \leq y$ iff $x \land y = x$ iff $x \lor y = y$.
- (2) **bounded lattice.** A lattice is bounded if it has a least element 0 and a greatest element 1.
- (3) **complete lattice.** A lattice $\langle L; \leq \rangle$ is complete if any subset $U \subseteq L$ has a meet and a join. This includes the empty set. The empty join is the least element of L and the empty meet is the largest element of L.
- (4) **compact element.** An element $c \in L$ compact if $c \leq \bigvee_{i \in I} d_i$ implies that there is a finite subset $I_0 \subseteq I$ such that $c \leq \bigvee_{i \in I_0} d_i$. (Any cover of c has a finite subcover.)
- (5) **compactly generated lattice.** A lattice is compactly generated if every element is the join of the compact elements below it.
- (6) algebraic lattice. A lattice is algebraic if it is complete and compactly generated.
- (7) **distributive law.** The distributive law if the universally quantified equation $x \land (y \lor z) = (x \land y) \lor (x \land z)$.
- (8) covering pair. x is covered by y (written $x \prec y$) if x < y and there is no z such that x < z < y.
- (9) **atom/coatom.** An atom of a bounded lattice is an element a such that $0 \prec a$. A coatom is an element c such that $c \prec 1$.
- (10) **atomistic/coatomistic lattice.** A lattice is atomistic if every element is a join of atoms. It is coatomistic if every element is a meet of coatoms.
- (11) complement of an element in a lattice. u is a complement of v in L if $u \wedge v = 0$ and $u \vee v = 1$.
- (12) **frame.** A frame is a complete lattice satisfying the infinite distributive law $x \land (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} x \land y_i$.
- (13) **prime/irreducible/point in a frame.** An element $p \in L$ is meet-irreducible if $(x \land y = p) \rightarrow (x = p) \lor (y = p)$. Such elements are also called "prime", "irreducible", or "a point".
- (14) **spatial frame.** A frame is spatial if it "has enough points", which means any two distinct elements can be separated by a point. Specifically, if $x, y \in L$ and $x \not\leq y$, then there exists a point p such that $y \leq p$ and $x \not\leq p$.