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Q.E. Theorems

Recall: A theory T has q.e. iff it has q.e. “locally”.
Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4)
T has q.e. iff for all M,N |= T ,
if a ∈ Mn, b ∈ Nn, then
tpq.f .

M (a) = tpq.f .
N (b) implies tpM(a) = tpN(b). 2

But how do you check this property of types?
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Algebraically prime extensions

A theory T has algebraically prime extensions if whenever A is a substructure
of a model of T there exists an extension A∗ of A, where A∗ |= T , such that
any embedding of A into a model of T extends to A∗.

T has algebraically prime extensions if whenever A is a substructure of a
model of T , then T ∪ Diag(A) has an algebraically prime model.
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Examples and nonexamples

Examples.
1 The theory of fields in the language of rings (F = 〈F; +,−, 0, ·, 1〉) has

algebraically prime extensions. (A substructure of a field F of
characteristic zero is an integral domain A of characteristic zero. E.g.
A = Z. The field of fractions A∗ is algebraically prime over A. E.g.
A∗ = Q.)

2 ACF0 has algebraically prime extensions. (A∗ is the algebraically closure
of the field of fractions of A.)

3 DAG has algebraically prime extensions. (A∗ is the divisible hull of A.)

Nonexample.
1 The theory T = Th(R) does not have algebraically prime extensions.

Reason: A = R(t) is embeddable in a model of T , but any A∗ would have
to decide which of t,−t should be a square.
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A Q.E. Theorem

Theorem. If T
1 has algebraically prime extensions, and
2 is model complete,

then T has q.e.

Proof. Choose models M,N |= T and tuples a ∈ Mn and b ∈ Nn.
Let A be the substructure of M generated by the elements of a,
and let B be the substructure of N generated by the elements of b.
Let A∗ and B∗ be algebraically prime extensions of A and B.
tpq.f .

M (a) = tpq.f .
N (b)⇒

∃f : A ∼−→ B : a 7→ b⇒
tpA∗(a) = tpB∗(b).
But A∗ ≺ M, B∗ ≺ N since all are models of T and T is model complete,
hence tpM(a) = tpA∗(a) = tpB∗(b) = tpN(b). 2
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A refinement

In the previous theorem, we can assume less than “T is model complete”,
although in the end T will have to be model complete by q.e.

Theorem. (cf. Marker 3.1.12)
If T

1 has algebraically prime extensions, and
2 whenever M,N |= T and M ≤ N, then M is existentially closed in N,

then T has q.e.

Here M is existentially closed in the extension N if whenever a ∈ Mn and
ϕ(x, y) is primitive + q.f., then N |= (∃y)ϕ(a, y) implies M |= (∃y)ϕ(a, y).
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ACF0

“Easy” Fact from Algebra. ACF0 has algebraically prime extensions. This
follows from the facts that every integral domain A has a field of fractions,
which has an algebraic closure A∗, and the extension property holds.

Less-easy Fact. If M ≤ N are models of ACF0, then M is existentially closed
in N.

If ϕ(x, y) is primitive+q.f., (
∧
±atomic)

then ϕ(a, y) is
∧
(p(a, y) = 0) ∧

∧
(q(a, y) 6= 0).

If p-part is not empty, then N |= (∃y)ϕ(a, y) implies M |= (∃y)ϕ(a, y)
because M contains all roots of the p-part that lie in N.
If p-part is empty, then M |= (∃y)ϕ(a, y) because M is infinite while zero sets
of 1-variable polynomials are finite. 2

The same strategy (with more algebra) proves that R< has q.e. That is, it is
more work to prove that Th(R<) has algebraically prime extensions, and there
are more primitive + q.f. formulas to consider.
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