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Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4)
T has q.e. iff forall M, N = T,
ifae M™ b e N", then

%/ (a) = %’ (b) implies tp;(a) = tpy(b). O

But how do you check this property of types?
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If T is an L-theory and A is embeddable in a model of 7', then a model

A* |= T satisfying A < A*, is algebraically prime over A if any embedding
j: A— M, M =T, can be extended to an embedding j*: A* — M.
(‘Extended’” means j*|4 = j.)

A theory T has algebraically prime extensions if whenever A is a substructure
of a model of 7', then A has an algebraically prime extension, A* = T'.

Equivalently, 7" has algebraically prime extensions if whenever A is a
substructure of a model of 7', then the theory 7" U Diag(A) has a model
embeddable in all other models of this theory.
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@ The theory of fields in the language of rings (F = (F';-,+, —, 0, 1)) has
algebraically prime extensions. (A substructure of a field IF is an integral
domain D of the same characteristic. E.g. if char(FF) = 0, then D could
be Z. The field of fractions D* is algebraically prime over D. E.g. if
D = Z,then D* = Q.)

© ACEF has algebraically prime extensions. (If D is a substructure of an
algebraically closed field, then D* is the algebraically closure of the field
of fractions of D.)

© DAG (= nontrivial, torsion free, divisible, abelian groups) has
algebraically prime extensions. (A* is the ‘divisible hull’ of A.)

Nonexample.
@ The theory 7' = Th(R) does not have algebraically prime extensions.
Reason: A = R(t) is embeddable in a model of 7', but any A* would
have to decide which of ¢, —¢ should be a square.
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In the previous theorem, we can assume less than “I" is model complete”,
although in the end 7" will have to be model complete by q.e.

Theorem. (cf. Marker 3.1.12)
Itr

@ has algebraically prime extensions, and
@ whenever M, N =T and M < N, then M is existentially closed in N,
then 7' has qg.e.

Here M is existentially closed in the extension NV if whenever a € M™ and
o(x,y) is primitive + q.f., then N = (Jy)¢(a, y) implies M = (Jy)e(a,y).
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which has an algebraic closure A*, and the extension property holds.

Less-easy Fact. If M < N are models of ACFy, then M is existentially
closed in V.

If p(x, y) is primitive+q.f., (/\ Z-atomic)

then ¢(a, y) is A(p(a,y) = 0) A A(g(a, y) # 0).

If p-part is not empty, then N = (Jy)p(a,y) implies M = (Jy)p(a,y)
because M contains all roots of the p-part that lie in V.

If p-part is empty, then M = (Jy)p(a, y) because M is infinite while zero
sets of 1-variable polynomials are finite. O

Hence ACFg has q.e. (Tarski’s Theorem). O

The same strategy (with more algebra) proves that R has g.e. That is, it is
more work to prove that Th(R.) has algebraically prime extensions, and there
are more primitive + q.f. formulas to consider.
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