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Q.E. Theorems

Recall: A theory T has q.e. iff it has q.e. “locally”.
Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4)
T has q.e. iff for all M, N |= T ,
if a ∈ Mn, b ∈ Nn, then
tpq.f.

M (a) = tpq.f.
N (b) implies tpM (a) = tpN (b). 2

But how do you check this property of types?
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Algebraically prime models/extensions

If T is an L-theory and A is embeddable in a model of T , then a model
A∗ |= T satisfying A ≤ A∗, is algebraically prime over A if any embedding
j : A → M , M |= T , can be extended to an embedding j∗ : A∗ → M .
(‘Extended’ means j∗|A = j.)

A theory T has algebraically prime extensions if whenever A is a substructure
of a model of T , then A has an algebraically prime extension, A∗ |= T .

Equivalently, T has algebraically prime extensions if whenever A is a
substructure of a model of T , then the theory T ∪ Diag(A) has a model
embeddable in all other models of this theory.
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Examples and nonexamples

Examples.

1 The theory of fields in the language of rings (F = ⟨F ; ·, +, −, 0, 1⟩) has
algebraically prime extensions. (A substructure of a field F is an integral
domain D of the same characteristic. E.g. if char(F) = 0, then D could
be Z. The field of fractions D∗ is algebraically prime over D. E.g. if
D = Z, then D∗ = Q.)

2 ACF has algebraically prime extensions. (If D is a substructure of an
algebraically closed field, then D∗ is the algebraically closure of the field
of fractions of D.)

3 DAG (= nontrivial, torsion free, divisible, abelian groups) has
algebraically prime extensions. (A∗ is the ‘divisible hull’ of A.)

Nonexample.

1 The theory T = Th(R) does not have algebraically prime extensions.
Reason: A = R(t) is embeddable in a model of T , but any A∗ would
have to decide which of t, −t should be a square.
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A Q.E. Theorem

Theorem. If T

1 has algebraically prime extensions, and
2 is model complete,

then T has q.e.

Proof. Choose models M, N |= T and tuples a ∈ Mn and b ∈ Nn.
Let A be the substructure of M generated by the elements of a,
and let B be the substructure of N generated by the elements of b.
Let A∗ and B∗ be algebraically prime extensions of A and B.
tpq.f.

M (a) = tpq.f.
N (b) ⇒

∃f : A
∼−→ B : a 7→ b ⇒

∃f∗ : A∗ ↪→ B∗ : a 7→ b ⇒
tpA∗(a) = tpf∗(A∗)(b) = tpB∗(b). (Since f∗(A∗) ≺ B∗, by model
completeness.)
But A∗ ≺ M , B∗ ≺ N (model completeness), so
tpM (a) = tpA∗(a) = tpB∗(b) = tpN (b). 2
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A refinement

In the previous theorem, we can assume less than “T is model complete”,
although in the end T will have to be model complete by q.e.

Theorem. (cf. Marker 3.1.12)
If T

1 has algebraically prime extensions, and
2 whenever M, N |= T and M ≤ N , then M is existentially closed in N ,

then T has q.e.

Here M is existentially closed in the extension N if whenever a ∈ Mn and
φ(x, y) is primitive + q.f., then N |= (∃y)φ(a, y) implies M |= (∃y)φ(a, y).
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ACF0

“Easy” Fact from Algebra. ACF0 has algebraically prime extensions. This
follows from the facts that every integral domain A has a field of fractions,
which has an algebraic closure A∗, and the extension property holds.

Less-easy Fact. If M ≤ N are models of ACF0, then M is existentially
closed in N .

If φ(x, y) is primitive+q.f., (
∧

±atomic)
then φ(a, y) is

∧
(p(a, y) = 0) ∧

∧
(q(a, y) ̸= 0).

If p-part is not empty, then N |= (∃y)φ(a, y) implies M |= (∃y)φ(a, y)
because M contains all roots of the p-part that lie in N .
If p-part is empty, then M |= (∃y)φ(a, y) because M is infinite while zero
sets of 1-variable polynomials are finite. 2

Hence ACF0 has q.e. (Tarski’s Theorem). 2

The same strategy (with more algebra) proves that R< has q.e. That is, it is
more work to prove that Th(R<) has algebraically prime extensions, and there
are more primitive + q.f. formulas to consider.
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Definable sets in models of theories with q.e.

Definition. if A is an L-structure, then a subset D ⊆ Am is definable over
P ⊆ A (or P -definable) if there is an L-formula φ(x, y) and a tuple p ∈ P n

such that d ∈ D if and only if A |= φ(d, p). We might write D = φ[An, p]
for this. (If P = ∅, then we say that D is 0-definable.)

Remarks.

1 If T has q.e., and A is a model of T , then the P -definable sets of An are the
sets that are ‘Boolean combinations’ of sets P -definable by ±atomic formulas.

2 In particular, if T is some theory of fields, T has q.e., and F |= T is infinite,
then every P -definable subset of F is finite or cofinite. (A q.e.-theory of infinite
fields is ‘strongly minimal’.)

3 This makes it easy to see that the theory of R does not have q.e., since the image
of q(t) = t2 is neither finite nor cofinite.

4 In fact, it makes it easy to see that if F is an infinite field whose theory has q.e.,
then every nonconstant polynomial q(t) ∈ F[t] has cofinite image. (q : F → F is
‘almost surjective’.)
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2 In particular, if T is some theory of fields, T has q.e., and F |= T is infinite,
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3 This makes it easy to see that the theory of R does not have q.e., since the image
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4 In fact, it makes it easy to see that if F is an infinite field whose theory has q.e.,
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