The theories of the fields $\mathbb C$ and $\mathbb R_<$

Recall: A theory T has q.e. iff it has q.e. "locally".

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Theorem.

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4)

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4) T has q.e. iff for all $M, N \models T$,

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4) T has q.e. iff for all $M, N \models T$, if $\mathbf{a} \in M^n, \mathbf{b} \in N^n$, then

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4) T has q.e. iff for all $M, N \models T$, if $\mathbf{a} \in M^n$, $\mathbf{b} \in N^n$, then $\operatorname{tp}_M^{q.f.}(\mathbf{a}) = \operatorname{tp}_N^{q.f.}(\mathbf{b})$ implies $\operatorname{tp}_M(\mathbf{a}) = \operatorname{tp}_N(\mathbf{b})$. \Box

Recall: A theory T has q.e. iff it has q.e. "locally". Having q.e. locally means that every type is determined by its q.f. part.

Theorem. (cf. Marker 3.1.4) T has q.e. iff for all $M, N \models T$, if $\mathbf{a} \in M^n$, $\mathbf{b} \in N^n$, then $\operatorname{tp}_M^{q.f.}(\mathbf{a}) = \operatorname{tp}_N^{q.f.}(\mathbf{b})$ implies $\operatorname{tp}_M(\mathbf{a}) = \operatorname{tp}_N(\mathbf{b})$. \Box

But how do you check this property of types?

If T is an L-theory and A is embeddable in a model of T,

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is algebraically prime over A

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is *algebraically prime over* A if any embedding $j: A \to M, M \models T$, can be extended to an embedding $j^*: A^* \to M$.

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is algebraically prime over A if any embedding $j: A \to M, M \models T$, can be extended to an embedding $j^*: A^* \to M$. ('Extended' means $j^*|_A = j$.)

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is algebraically prime over A if any embedding $j: A \to M, M \models T$, can be extended to an embedding $j^*: A^* \to M$. ('Extended' means $j^*|_A = j$.)

A theory T has algebraically prime extensions if whenever A is a substructure of a model of T,

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is algebraically prime over A if any embedding $j: A \to M, M \models T$, can be extended to an embedding $j^*: A^* \to M$. ('Extended' means $j^*|_A = j$.)

A theory T has algebraically prime extensions if whenever A is a substructure of a model of T, then A has an algebraically prime extension, $A^* \models T$.

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is algebraically prime over A if any embedding $j: A \to M, M \models T$, can be extended to an embedding $j^*: A^* \to M$. ('Extended' means $j^*|_A = j$.)

A theory T has algebraically prime extensions if whenever A is a substructure of a model of T, then A has an algebraically prime extension, $A^* \models T$.

Equivalently, T has algebraically prime extensions if whenever A is a substructure of a model of T,

If T is an L-theory and A is embeddable in a model of T, then a model $A^* \models T$ satisfying $A \le A^*$, is algebraically prime over A if any embedding $j: A \to M, M \models T$, can be extended to an embedding $j^*: A^* \to M$. ('Extended' means $j^*|_A = j$.)

A theory T has algebraically prime extensions if whenever A is a substructure of a model of T, then A has an algebraically prime extension, $A^* \models T$.

Equivalently, T has algebraically prime extensions if whenever A is a substructure of a model of T, then the theory $T \cup \text{Diag}(A)$ has a model embeddable in all other models of this theory.

Examples.

• The theory of fields in the language of rings

Examples.

• The theory of fields in the language of rings

Examples.

• The theory of fields in the language of rings ($\mathbb{F} = \langle F; \cdot, +, -, 0, 1 \rangle$)

Examples.

• The theory of fields in the language of rings $(\mathbb{F} = \langle F; \cdot, +, -, 0, 1 \rangle)$ has algebraically prime extensions.

● The theory of fields in the language of rings (𝔽 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔽 is an integral domain D of the same characteristic.

Examples.

The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be ℤ.

The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D.

Examples.

The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)

- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- Output ACF has algebraically prime extensions.

- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- Output ACF has algebraically prime extensions.

- The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field,

- The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)

- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)

DAG

- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)

DAG

- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- OAG (= nontrivial, torsion free, divisible, abelian groups)
- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- DAG (= nontrivial, torsion free, divisible, abelian groups) has algebraically prime extensions.

- The theory of fields in the language of rings (F = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field F is an integral domain D of the same characteristic. E.g. if char(F) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- DAG (= nontrivial, torsion free, divisible, abelian groups) has algebraically prime extensions. (A* is the 'divisible hull' of A.)

- The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- DAG (= nontrivial, torsion free, divisible, abelian groups) has algebraically prime extensions. (A* is the 'divisible hull' of A.)

Nonexample.

- The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- DAG (= nontrivial, torsion free, divisible, abelian groups) has algebraically prime extensions. (A* is the 'divisible hull' of A.)

Nonexample.

• The theory $T = \text{Th}(\mathbb{R})$ does not have algebraically prime extensions.

- The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- DAG (= nontrivial, torsion free, divisible, abelian groups) has algebraically prime extensions. (A* is the 'divisible hull' of A.)

Nonexample.

• The theory $T = \text{Th}(\mathbb{R})$ does not have algebraically prime extensions.

- The theory of fields in the language of rings (𝔅 = ⟨F; ·, +, -, 0, 1⟩) has algebraically prime extensions. (A substructure of a field 𝔅 is an integral domain D of the same characteristic. E.g. if char(𝔅) = 0, then D could be Z. The field of fractions D* is algebraically prime over D. E.g. if D = Z, then D* = Q.)
- ACF has algebraically prime extensions. (If D is a substructure of an algebraically closed field, then D^* is the algebraically closure of the field of fractions of D.)
- DAG (= nontrivial, torsion free, divisible, abelian groups) has algebraically prime extensions. (A^* is the 'divisible hull' of A.)

Nonexample.

 The theory T = Th(R) does not have algebraically prime extensions. Reason: A = R(t) is embeddable in a model of T, but any A* would have to decide which of t, -t should be a square.

Theorem.

Theorem. If T

Theorem. If ${\cal T}$

has algebraically prime extensions, and

Theorem. If ${\cal T}$

has algebraically prime extensions, and

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof.

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$.

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} ,

Theorem. If ${\cal T}$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} .

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B.

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_{M}^{q,f.}(\mathbf{a}) = \operatorname{tp}_{N}^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^*: A^* \hookrightarrow B^*: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^*: A^* \hookrightarrow B^*: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\operatorname{tp}_{A^*}(\mathbf{a}) = \operatorname{tp}_{f^*(A^*)}(\mathbf{b})$

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^*: A^* \hookrightarrow B^*: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\operatorname{tp}_{A^*}(\mathbf{a}) = \operatorname{tp}_{f^*(A^*)}(\mathbf{b}) = \operatorname{tp}_{B^*}(\mathbf{b}).$

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^*: A^* \hookrightarrow B^*: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\operatorname{tp}_{A^*}(\mathbf{a}) = \operatorname{tp}_{f^*(A^*)}(\mathbf{b}) = \operatorname{tp}_{B^*}(\mathbf{b}).$ (Since $f^*(A^*) \prec B^*$,

Theorem. If T

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^*: A^* \hookrightarrow B^*: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\operatorname{tp}_{A^*}(\mathbf{a}) = \operatorname{tp}_{f^*(A^*)}(\mathbf{b}) = \operatorname{tp}_{B^*}(\mathbf{b})$. (Since $f^*(A^*) \prec B^*$, by model completeness.)

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f : A \xrightarrow{\sim} B : \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^* : A^* \hookrightarrow B^* : \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\operatorname{tp}_{A^*}(\mathbf{a}) = \operatorname{tp}_{f^*(A^*)}(\mathbf{b}) = \operatorname{tp}_{B^*}(\mathbf{b})$. (Since $f^*(A^*) \prec B^*$, by model completeness.) But $A^* \prec M, B^* \prec N$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of \mathbf{b} . Let A^* and B^* be algebraically prime extensions of A and B. $\operatorname{tp}_M^{q,f.}(\mathbf{a}) = \operatorname{tp}_N^{q,f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^*: A^* \hookrightarrow B^*: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\operatorname{tp}_{A^*}(\mathbf{a}) = \operatorname{tp}_{f^*(A^*)}(\mathbf{b}) = \operatorname{tp}_{B^*}(\mathbf{b})$. (Since $f^*(A^*) \prec B^*$, by model completeness.) But $A^* \prec M, B^* \prec N$ (model completeness),

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of **b**. Let A^* and B^* be algebraically prime extensions of A and B. $tp_{M}^{q.f.}(\mathbf{a}) = tp_{M}^{q.f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^* : A^* \hookrightarrow B^* : \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $tp_{A^*}(\mathbf{a}) = tp_{f^*(A^*)}(\mathbf{b}) = tp_{B^*}(\mathbf{b})$. (Since $f^*(A^*) \prec B^*$, by model completeness.) But $A^* \prec M, B^* \prec N$ (model completeness), so $\operatorname{tp}_{M}(\mathbf{a}) = \operatorname{tp}_{A^{*}}(\mathbf{a}) = \operatorname{tp}_{B^{*}}(\mathbf{b}) = \operatorname{tp}_{N}(\mathbf{b}).$

- has algebraically prime extensions, and
- is model complete,

then T has q.e.

Proof. Choose models $M, N \models T$ and tuples $\mathbf{a} \in M^n$ and $\mathbf{b} \in N^n$. Let A be the substructure of M generated by the elements of \mathbf{a} , and let B be the substructure of N generated by the elements of **b**. Let A^* and B^* be algebraically prime extensions of A and B. $tp_{M}^{q.f.}(\mathbf{a}) = tp_{M}^{q.f.}(\mathbf{b}) \Rightarrow$ $\exists f: A \xrightarrow{\sim} B: \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $\exists f^* : A^* \hookrightarrow B^* : \mathbf{a} \mapsto \mathbf{b} \Rightarrow$ $tp_{A^*}(\mathbf{a}) = tp_{f^*(A^*)}(\mathbf{b}) = tp_{B^*}(\mathbf{b})$. (Since $f^*(A^*) \prec B^*$, by model completeness.) But $A^* \prec M, B^* \prec N$ (model completeness), so $\operatorname{tp}_{M}(\mathbf{a}) = \operatorname{tp}_{A^{*}}(\mathbf{a}) = \operatorname{tp}_{B^{*}}(\mathbf{b}) = \operatorname{tp}_{N}(\mathbf{b}).$

A refinement

In the previous theorem, we can assume less than "T is model complete",

Theorem.

Theorem. (cf. Marker 3.1.12)
Theorem. (cf. Marker 3.1.12) If *T*

```
Theorem. (cf. Marker 3.1.12) If T
```

has algebraically prime extensions, and

```
Theorem. (cf. Marker 3.1.12) If T
```

has algebraically prime extensions, and

```
Theorem. (cf. Marker 3.1.12) If T
```

- has algebraically prime extensions, and
- **2** whenever $M, N \models T$ and $M \le N$, then M is *existentially closed* in N,

```
Theorem. (cf. Marker 3.1.12) If T
```

- has algebraically prime extensions, and
- **2** whenever $M, N \models T$ and $M \le N$, then M is *existentially closed* in N,

```
Theorem. (cf. Marker 3.1.12) If T
```

has algebraically prime extensions, and

(a) whenever $M, N \models T$ and $M \le N$, then M is *existentially closed* in N, then T has q.e.

```
Theorem. (cf. Marker 3.1.12) If T
```

has algebraically prime extensions, and

(2) whenever $M, N \models T$ and $M \le N$, then M is *existentially closed* in N, then T has q.e.

Here M is existentially closed in the extension N if whenever $\mathbf{a} \in M^n$ and $\varphi(\mathbf{x}, y)$ is primitive + q.f., then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$.

ACF_0

"Easy" Fact from Algebra. ACF₀ has algebraically prime extensions.

"Easy" Fact from Algebra. ACF_0 has algebraically prime extensions. This follows from the facts that every integral domain *A* has a field of fractions,

"Easy" Fact from Algebra. ACF_0 has algebraically prime extensions. This follows from the facts that every integral domain A has a field of fractions, which has an algebraic closure A^* ,

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f.,

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., ($\wedge \pm atomic$)

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., ($\bigwedge \pm \text{atomic}$) then $\varphi(\mathbf{a}, y)$ is $\bigwedge(p(\mathbf{a}, y) = 0) \land \bigwedge(q(\mathbf{a}, y) \neq 0)$.

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., ($\wedge \pm \text{atomic}$) then $\varphi(\mathbf{a}, y)$ is $\wedge (p(\mathbf{a}, y) = 0) \wedge \wedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*.

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., ($\wedge \pm \text{atomic}$) then $\varphi(\mathbf{a}, y)$ is $\wedge (p(\mathbf{a}, y) = 0) \wedge \wedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite.

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., ($\wedge \pm \text{atomic}$) then $\varphi(\mathbf{a}, y)$ is $\wedge (p(\mathbf{a}, y) = 0) \wedge \wedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., $(\bigwedge \pm \text{atomic})$ then $\varphi(\mathbf{a}, y)$ is $\bigwedge (p(\mathbf{a}, y) = 0) \land \bigwedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Hence ACF₀ has q.e.

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., $(\bigwedge \pm \text{atomic})$ then $\varphi(\mathbf{a}, y)$ is $\bigwedge (p(\mathbf{a}, y) = 0) \land \bigwedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Hence ACF₀ has q.e. (Tarski's Theorem).

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., $(\bigwedge \pm \text{atomic})$ then $\varphi(\mathbf{a}, y)$ is $\bigwedge (p(\mathbf{a}, y) = 0) \land \bigwedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Hence ACF₀ has q.e. (Tarski's Theorem). \Box

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., $(\bigwedge \pm \text{atomic})$ then $\varphi(\mathbf{a}, y)$ is $\bigwedge (p(\mathbf{a}, y) = 0) \land \bigwedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Hence ACF₀ has q.e. (Tarski's Theorem). \Box

The same strategy (with more algebra) proves that $\mathbb{R}_{<}$ has q.e.

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., ($\wedge \pm \text{atomic}$) then $\varphi(\mathbf{a}, y)$ is $\wedge (p(\mathbf{a}, y) = 0) \wedge \wedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Hence ACF₀ has q.e. (Tarski's Theorem). \Box

The same strategy (with more algebra) proves that $\mathbb{R}_{<}$ has q.e. That is, it is more work to prove that $\text{Th}(\mathbb{R}_{<})$ has algebraically prime extensions,

Less-easy Fact. If $M \leq N$ are models of ACF₀, then M is existentially closed in N.

If $\varphi(\mathbf{x}, y)$ is primitive+q.f., $(\bigwedge \pm \text{atomic})$ then $\varphi(\mathbf{a}, y)$ is $\bigwedge (p(\mathbf{a}, y) = 0) \land \bigwedge (q(\mathbf{a}, y) \neq 0)$. If *p*-part is not empty, then $N \models (\exists y)\varphi(\mathbf{a}, y)$ implies $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* contains all roots of the *p*-part that lie in *N*. If *p*-part is empty, then $M \models (\exists y)\varphi(\mathbf{a}, y)$ because *M* is infinite while zero sets of 1-variable polynomials are finite. \Box

Hence ACF₀ has q.e. (Tarski's Theorem). \Box

The same strategy (with more algebra) proves that $\mathbb{R}_{<}$ has q.e. That is, it is more work to prove that $\text{Th}(\mathbb{R}_{<})$ has algebraically prime extensions, and there are more primitive + q.f. formulas to consider.

Definition.

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is definable over $P \subseteq A$ (or *P*-definable) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$.

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this.

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

Remarks.

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is definable over $P \subseteq A$ (or *P*-definable) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-definable.)

Remarks.

• If T has q.e.,

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is definable over $P \subseteq A$ (or *P*-definable) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-definable.)

Remarks.

• If T has q.e.,

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

Remarks.

• If T has q.e., and \mathbf{A} is a model of T,

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

Remarks.

If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

Remarks.

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- 2 In particular, if T is some theory of fields,
Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- 2 In particular, if T is some theory of fields,

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- 2 In particular, if T is some theory of fields, T has q.e.,

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- 2 In particular, if T is some theory of fields, T has q.e., and $\mathbb{F} \models T$ is infinite,

Definition. if **A** is an *L*-structure, then a subset $D \subseteq A^m$ is *definable over* $P \subseteq A$ (or *P*-*definable*) if there is an *L*-formula $\varphi(\mathbf{x}, \mathbf{y})$ and a tuple $\mathbf{p} \in P^n$ such that $\mathbf{d} \in D$ if and only if $\mathbf{A} \models \varphi(\mathbf{d}, \mathbf{p})$. We might write $D = \varphi[A^n, \mathbf{p}]$ for this. (If $P = \emptyset$, then we say that *D* is 0-*definable*.)

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and $\mathbb{F} \models T$ is infinite, then every P-definable subset of \mathbb{F} is finite or cofinite.

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and F ⊨ T is infinite, then every P-definable subset of F is finite or cofinite. (A q.e.-theory of infinite fields is 'strongly minimal'.)
- This makes it easy to see that the theory of R does not have q.e., since the image of q(t) = t² is neither finite nor cofinite.

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and F ⊨ T is infinite, then every P-definable subset of F is finite or cofinite. (A q.e.-theory of infinite fields is 'strongly minimal'.)
- This makes it easy to see that the theory of R does not have q.e., since the image of q(t) = t² is neither finite nor cofinite.

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and F ⊨ T is infinite, then every P-definable subset of F is finite or cofinite. (A q.e.-theory of infinite fields is 'strongly minimal'.)
- This makes it easy to see that the theory of R does not have q.e., since the image of q(t) = t² is neither finite nor cofinite.
- In fact, it makes it easy to see that if \mathbb{F} is an infinite field whose theory has q.e.,

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and F ⊨ T is infinite, then every P-definable subset of F is finite or cofinite. (A q.e.-theory of infinite fields is 'strongly minimal'.)
- This makes it easy to see that the theory of R does not have q.e., since the image of q(t) = t² is neither finite nor cofinite.
- In fact, it makes it easy to see that if \mathbb{F} is an infinite field whose theory has q.e.,

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and F ⊨ T is infinite, then every P-definable subset of F is finite or cofinite. (A q.e.-theory of infinite fields is 'strongly minimal'.)
- This makes it easy to see that the theory of R does not have q.e., since the image of q(t) = t² is neither finite nor cofinite.
- In fact, it makes it easy to see that if \mathbb{F} is an infinite field whose theory has q.e., then every nonconstant polynomial $q(t) \in \mathbb{F}[t]$ has cofinite image.

- If T has q.e., and A is a model of T, then the P-definable sets of Aⁿ are the sets that are 'Boolean combinations' of sets P-definable by ±atomic formulas.
- ② In particular, if T is some theory of fields, T has q.e., and F ⊨ T is infinite, then every P-definable subset of F is finite or cofinite. (A q.e.-theory of infinite fields is 'strongly minimal'.)
- This makes it easy to see that the theory of R does not have q.e., since the image of q(t) = t² is neither finite nor cofinite.
- In fact, it makes it easy to see that if F is an infinite field whose theory has q.e., then every nonconstant polynomial q(t) ∈ F[t] has cofinite image. (q: F → F is 'almost surjective'.)