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Recall

Definition. A theory T has quantifier elimination if for every formula φ(x)
there is a quantifier-free formula α(x) such that

T |= (∀x)(φ(x) ↔ α(x)).

If T has q.e., then

1 all embeddings between models are elementary,
2 it is easier to check completeness of T ,
3 it is easier to establish ℵ0-categoricity of some T ’s,
4 it is easier to classify definable sets in models.

We have shown that the theory of infinite sets has q.e. using “brute force”.
Now we are going to develop other techniques to establish that a theory has
q.e.
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Atomic diagrams

Definition. If A is an L-structure, then the atomic diagram of A is the
LA-theory axiomatized by the ±atomic sentences that hold in AA. (Write
Diag(A) for this theory.)

Diagram Lemma. BA is a model of the atomic diagram of A iff the mapping
h : A → B : aA → aB is an embedding.

Proof. If BA is a model of the atomic diagram of A, then BA satisfies all
LA-sentences of the form ±(ai = aj), ±(F (ai1 , . . . , ain) = aj),
±R(ai1 , . . . , ain) that are true in A. From its definition, h must preserve the
satisfaction of these sentences, hence h is an embedding.
Conversely, if BA is not a model of the atomic diagram of A, then there is
some ±atomic formula α(x) and some tuple a ∈ An such that BA ̸|= α(a)
while AA |= α(a). In this case h does not preserve the truth of α(a), so it is
not an embedding. 2
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A ‘local’ characterization of q.e.

Theorem. Let T be an L-theory and φ(x) be an L-formula. TFAE.

(1) T |= (∀x)(φ(x) ↔ α(x)) for some quantifier free formula α(x).

(2) For all B,C |= T , A ≤ B,C and a ∈ An, B |= φ[a] iff C |= φ[a].

Proof.
[(1)⇒(2)] B |= φ[a] iff B |= α[a] iff A |= α[a] iff C |= α[a] iff C |= φ[a].
This uses the fact that q.f. formulas are preserved in passing to substructures
or extensions.
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A ‘local’ characterization of q.e.

[(2)⇒(1)] Add a tuple c of new constants to the language with |c| = |x|. Let

Σ = {α(c) ∈ Lq.f.(c) | T |= φ(c) → α(c)}

be the set of q.f. sentences in Lc that are consequences of T ∪ {φ(c)}. (Note
that a q.f. Lc-sentence α(c) is obtained from a q.f. L-formula α(x) by
replacing x with c.)
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A ‘local’ characterization of q.e.

Claim 1. T ∪ Σ |= φ(c).

We are working in the language Lc.
If Claim 1 is false, there is an Lc-structure Bc such that
Bc |= T ∪ Σ ∪ {¬φ(c)}. Let Ac = ⟨c⟩Bc be the substructure in Bc
generated by (the elements in) c. For the underlying L-structures A and B we
have B |= T , A ≤ B, c ∈ A and B ̸|= φ[c]. To conclude the proof of the
claim we intend to obtain a contradiction using condition (2) of the theorem.
To do this it suffices to exhibit an L-structure C such that C |= T , A ≤ C
and C |= φ[c]. Therefore let Γ = T ∪ Diag(Ac) ∪ {φ(c)}.
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A ‘local’ characterization of q.e.

Subclaim 2. Γ has a model.

If not, then there is a finite conjunction ψ(c) of members of Diag(Ac) such
that T ∪ {ψ(c), φ(c)} has no model. This fact is expressible as
T |= φ(c) → ¬ψ(c), hence ¬ψ(c) ∈ Σ. Hence Bc |= ¬ψ(c), hence
Ac |= ¬ψ(c) since ψ(c) is q.f. But ψ(c) ∈ Diag(Ac), so this is a
contradiction. The Subclaim is proved.

The Subclaim and condition (2) of the theorem lead to a contradiction in the
proof of the Claim. Namely, if Γ has a model, Cc, then the L-reducts of
Ac,Bc, and Cc are structures satisfying B,C |= T , A ≤ B,C, a = cA,
B |= ¬φ[a] while C |= φ[a]. The Claim is proved.

To complete the proof of the theorem, let α(c) = ∧αi(c) be a finite
conjunction of members of Σ for which T ∪ {α(c)} |= φ(c); i.e.
T |= α(c) → φ(c). Since α(c) = ∧αi(c) and T |= φ(c) → αi(c) for each i,
we have T |= φ(c) ↔ α(c). Since c does not appear in T ,
T |= (∀x)(φ(x) ↔ α(x)). 2
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T |= (∀x)(φ(x) ↔ α(x)).

2
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Subclaim 2. Γ has a model.
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To complete the proof of the theorem, let α(c) = ∧αi(c) be a finite
conjunction of members of Σ for which T ∪ {α(c)} |= φ(c); i.e.
T |= α(c) → φ(c). Since α(c) = ∧αi(c) and T |= φ(c) → αi(c) for each i,
we have T |= φ(c) ↔ α(c). Since c does not appear in T ,
T |= (∀x)(φ(x) ↔ α(x)). 2

Quantifier elimination, Part 2 7 / 8



A ‘local’ characterization of q.e.

Corollary. T has q.e. if and only if for all B,C |= T , if b ∈ Bn and c ∈ Cn,
typq.f.

B (b) = typq.f.
C (c) implies typB(b) = typC(c).

Corollary. An L-theory T has q.e. if and only if, whenever A is a
substructure of a model of T , the LA-theory T ∪ Diag(A) is complete.
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