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© becomes easier to classify definable sets in models.
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The Morleyization (or atomization) of an L-theory T is the theory 7" in an
expanded language having a new relation symbol R, (x1,. .., x,) for every
L-formula ¢(x1, ..., z,) where we add to 7" the sentences

(V) (p(x) < Ry(x)).

It is obvious that the models of 7" and T” are essentially the same, and that 7"
has g.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.
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Thus every use of a quantifier in a formula for R can be reduced to

o<(zy):  (F)y==z+2).
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The theory T" of infinite sets in the language of equality has q.e.

Any formula can be put in the form (Q12;,) - - - (Qnx;, ) (V A Latomic).
To eliminate ()’s, it suffices to eliminate Jy from (Jy)(\/ A Latomic).

But 3 distributes over \/, so it suffices to eliminate Jy from (Jy)( +atomic).
Such formulas are “primitive formulas”.
(“primitive” = existential conjunction of £ atomic.)

“Arrangement” of variables: For some equivalence relation £ on {1,...,n}
Arrg(z1, ..., 2,) = /\ (i = x5) A /\ —(x; = x;).
(i.j)eE (1.4)¢E
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Brute force example

The theory T" of infinite sets in the language of equality has q.e.

Any formula can be put in the form (Q12;,) - - - (Qnx;, ) (V A Latomic).
To eliminate ()’s, it suffices to eliminate Jy from (Jy)(\/ A Latomic).

But 3 distributes over \/, so it suffices to eliminate Jy from (Jy)( +atomic).
Such formulas are “primitive formulas”.
(“primitive” = existential conjunction of £ atomic.)

“Arrangement” of variables: For some equivalence relation £ on {1,...,n}

Arrg(z1, ..., 2,) = /\ (i = x5) A /\ —(x; = x;).
(i.)eE (i.5)¢E

This is a conjunction of +atomic.
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Lemma. (Classification of q.f. formulas modulo 7'.)
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Brute force example: more

Lemma. (Classification of q.f. formulas modulo 7".) Any q.f. formula is
either inconsistent (e.g. —(x; = x;)) or is equivalent to a disjunction of

finitely many arrangements. O

Hence, if p(x, y) is ¢.f., T = (V%) ((3y)e(x,y) < By) (Vi Arrg, (x,9))).
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Brute force example: more

Lemma. (Classification of q.f. formulas modulo 7".) Any q.f. formula is
either inconsistent (e.g. —(x; = x;)) or is equivalent to a disjunction of
finitely many arrangements. O

Hence, if ¢(x, ) is a.£. T = (%) (3y)e(x.y) © Gy)(V; Arrg, (x,9))).

Hence suffices to eliminate Jy in (Jy)Arrg(z1, ..., 20, y).
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Hence, if p(x, y) is ¢.f., T = (V%) ((3y)e(x,y) < By) (Vi Arrg, (x,9))).
Hence suffices to eliminate Jy in (Jy)Arrg(z1, ..., 20, y).

Let E* be the restriction of E from {x1,..., 2y, y} to {z1,...,2,}.
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Brute force example: more

Lemma. (Classification of q.f. formulas modulo 7".) Any q.f. formula is
either inconsistent (e.g. —(x; = x;)) or is equivalent to a disjunction of
finitely many arrangements. O

Hence, if p(x, y) is ¢.f., T = (V%) ((3y)e(x,y) < By) (Vi Arrg, (x,9))).
Hence suffices to eliminate Jy in (Jy)Arrg(z1, ..., 20, y).

Let E* be the restriction of E from {x1,...,zy,,y} to {z1,...,2,}. Then
note that

T & (Vx)((3y)Arrg(x,y) < Arrg«(x)).0
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Brute force example: more

Lemma. (Classification of q.f. formulas modulo 7".) Any q.f. formula is
either inconsistent (e.g. —(x; = x;)) or is equivalent to a disjunction of
finitely many arrangements. O

Hence, if p(x, y) is ¢.f., T = (V%) ((3y)e(x,y) < By) (Vi Arrg, (x,9))).
Hence suffices to eliminate Jy in (Jy)Arrg(z1, ..., 20, y).

Let E* be the restriction of E from {x1,...,zy,,y} to {z1,...,2,}. Then
note that

T & (Vx)((3y)Arrg(x,y) < Arrg«(x)).0

A brute force argument that DLO has g.e. can be modeled on this one.
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