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Things you already know

It is possible to express that

φ(a, b, c) : (∃x)(ax2 + bx + c = 0)

is true in the ordered field R, for a given choice of a, b, c, in a different way
that doesn’t use a quantifier. Namely,

α(a, b, c) : ((a ̸= 0) ∧ (b2 − 4ac ≥ 0)) ∨ ((a = 0) ∧ ((b ̸= 0) ∨ (c = 0))).

It is possible to express that there exists an inverse to

[
a b
c d

]
in the ring

M2(R) using quantifiers:

φ(a, b, c, d) : (∃t)(∃u)(∃v)(∃w)
([

a b
c d

]
·
[

t u
v w

]
=

[
t u
v w

]
·
[

a b
c d

]
=

[
1 0
0 1

])
or without:

α(a, b, c, d) : ad − bc ̸= 0.
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q.e.

Definition. A theory T has quantifier elimination if for every formula φ(x)
there is a quantifier-free formula α(x) such that

T |= (∀x)(φ(x) ↔ α(x)).

Examples.

1 The theory of infinite sets in the language of equality.
2 The theory of dense linear order in the language of ordered sets.
3 The theory of algebraically closed fields in the ring/field language.
4 The theory of the real numbers in the language of ordered fields.

Non-examples.

1 The theory of ⟨N; <⟩ in the language of ordered sets.
2 The theory of the real numbers in the ring/field language.
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Why do we care?

If T has q.e., then

1 A ≤ B implies A ≺ B whenever A and B are models of T .
2 all embeddings between models are elementary,
3 easier to check completeness of T : if there is a constant in the language,

check whether the theory decides the truth of every quantifier-free
sentence. If no constant, must also check whether the theory decides the
truth of (∃x)α(x) for every q.f., 1-variable, atomic formula α(x), where
T |= (∀x)(∀y)(α(x) ↔ α(y)).

4 easier to establish ℵ0-categoricity of some T ’s: any complete theory in a
finite relational language which has q.e. and which has an infinite model
will be ℵ0-categorical. (This statement need not be true if T does not
have q.e.!)

5 becomes easier to classify definable sets in models.
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What’s language got to do with it?

How to cheat.
The Morleyization (or atomization) of an L-theory T is the theory T ′ in an
expanded language having a new relation symbol Rφ(x1, . . . , xn) for every
L-formula φ(x1, . . . , xn) where we add to T the sentences

(∀x)(φ(x) ↔ Rφ(x)).

It is obvious that the models of T and T ′ are essentially the same, and that T ′

has q.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.

Quantifier elimination 5 / 9



What’s language got to do with it?

How to cheat.

The Morleyization (or atomization) of an L-theory T is the theory T ′ in an
expanded language having a new relation symbol Rφ(x1, . . . , xn) for every
L-formula φ(x1, . . . , xn) where we add to T the sentences

(∀x)(φ(x) ↔ Rφ(x)).

It is obvious that the models of T and T ′ are essentially the same, and that T ′

has q.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.

Quantifier elimination 5 / 9



What’s language got to do with it?

How to cheat.
The Morleyization (or atomization) of an L-theory T is the theory T ′ in an
expanded language having a new relation symbol Rφ(x1, . . . , xn) for every
L-formula φ(x1, . . . , xn) where we add to T the sentences

(∀x)(φ(x) ↔ Rφ(x)).

It is obvious that the models of T and T ′ are essentially the same, and that T ′

has q.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.

Quantifier elimination 5 / 9



What’s language got to do with it?

How to cheat.
The Morleyization (or atomization) of an L-theory T is the theory T ′ in an
expanded language having a new relation symbol Rφ(x1, . . . , xn) for every
L-formula φ(x1, . . . , xn) where we add to T the sentences

(∀x)(φ(x) ↔ Rφ(x)).

It is obvious that the models of T and T ′ are essentially the same, and that T ′

has q.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.

Quantifier elimination 5 / 9



What’s language got to do with it?

How to cheat.
The Morleyization (or atomization) of an L-theory T is the theory T ′ in an
expanded language having a new relation symbol Rφ(x1, . . . , xn) for every
L-formula φ(x1, . . . , xn) where we add to T the sentences

(∀x)(φ(x) ↔ Rφ(x)).

It is obvious that the models of T and T ′ are essentially the same, and that T ′

has q.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.

Quantifier elimination 5 / 9



What’s language got to do with it?

How to cheat.
The Morleyization (or atomization) of an L-theory T is the theory T ′ in an
expanded language having a new relation symbol Rφ(x1, . . . , xn) for every
L-formula φ(x1, . . . , xn) where we add to T the sentences

(∀x)(φ(x) ↔ Rφ(x)).

It is obvious that the models of T and T ′ are essentially the same, and that T ′

has q.e.

This is of theoretical value, and typically doesn’t bypass any practical
complications.

Quantifier elimination 5 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem.

Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.

(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement:

The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem.

The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields.

In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



The field of real numbers is an interesting example.

Tarski-Seidenberg Theorem. Implies that the theory of the ordered field
⟨R; +, −, 0, ·, 1, ≤⟩ has q.e.
(Theorem statement: The projection of a semialgebraic set X ⊆ Rn+1 onto its
first n-coordinates is a semialgebraic set in Rn.)

Macintyre’s Theorem. The only theories of fields with q.e. are the
algebraically closed fields. In particular, ⟨R; +, −, 0, ·, 1⟩ does not have q.e.

Thus every use of a quantifier in a formula for R can be reduced to

φ≤(x, y) : (∃z)(y = x + z2).

Quantifier elimination 6 / 9



Methods for establishing q.e.

1 BRUTE FORCE!! (Requires analysis/classification of the q.f. formulas.)
2 ≈ ≈ gentle ≈ persuasion ≈ ≈ ≈ ≈ ≈ ≈
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Brute force example

The theory T of infinite sets in the language of equality has q.e.

Any formula can be put in the form (Q1xi1) · · · (Qnxin)(
∨ ∧

±atomic).

To eliminate Q’s, it suffices to eliminate ∃y from (∃y)(
∨ ∧

±atomic).

But ∃ distributes over
∨

, so it suffices to eliminate ∃y from (∃y)(
∧

±atomic).
Such formulas are “primitive formulas”.
(“primitive” = existential conjunction of ± atomic.)

“Arrangement” of variables: For some equivalence relation E on {1, . . . , n}

ArrE(x1, . . . , xn) =
∧

(i,j)∈E

(xi = xj) ∧
∧

(i,j)/∈E

¬(xi = xj).

This is a conjunction of ±atomic.
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Brute force example: more

Lemma. (Classification of q.f. formulas modulo T .) Any q.f. formula is
either inconsistent (e.g. ¬(xi = xi)) or is equivalent to a disjunction of
finitely many arrangements. 2

Hence, if φ(x, y) is q.f., T |= (∀x)((∃y)φ(x, y) ↔ (∃y)(
∨

k ArrEk
(x, y))).

Hence suffices to eliminate ∃y in (∃y)ArrE(x1, . . . , xn, y).

Let E∗ be the restriction of E from {x1, . . . , xn, y} to {x1, . . . , xn}. Then
note that

T |= (∀x)((∃y)ArrE(x, y) ↔ ArrE∗(x)).2

A brute force argument that DLO has q.e. can be modeled on this one.
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