Elementary Diagrams

Let L be a language and let \mathbf{A} be an L-structure.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently:

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ and that **A** is a structure in this signature.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ and that **A** is a structure in this signature. For each $a \in A$,

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a .

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

$$(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

$$(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

- $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$
- $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

- $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$
- $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

• $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$ • $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$ • $F^{\mathbf{A}_A} = F^{\mathbf{A}} \text{ for } F \in \mathcal{F}$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

• $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$ • $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$ • $F^{\mathbf{A}_A} = F^{\mathbf{A}} \text{ for } F \in \mathcal{F}$

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

(c_a)^{A_A} = a for a ∈ A.
c^{A_A} = c^A for c ∈ C.
F^{A_A} = F^A for F ∈ F.
R^{A_A} = R^A for R ∈ F.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

(c_a)^{A_A} = a for a ∈ A.
c^{A_A} = c^A for c ∈ C.
F^{A_A} = F^A for F ∈ F.
R^{A_A} = R^A for R ∈ F.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, ar)$ with universe A and

(c_a)^{A_A} = a for a ∈ A.
 c^{A_A} = c^A for c ∈ C.
 F^{A_A} = F^A for F ∈ F.
 R^{A_A} = R^A for R ∈ F.

 L_A is the language of \mathbf{A}_A .

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, ar)$ with universe A and

(c_a)^{A_A} = a for a ∈ A.
 c^{A_A} = c^A for c ∈ C.
 F^{A_A} = F^A for F ∈ F.
 R^{A_A} = R^A for R ∈ F.

 L_A is the language of \mathbf{A}_A .

Definition.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, ar)$ with universe A and

(c_a)^{A_A} = a for a ∈ A.
c^{A_A} = c^A for c ∈ C.
F^{A_A} = F^A for F ∈ F.
B^{A_A} = B^A for B ∈ F

 L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

(c_a)^{A_A} = a for a ∈ A.
c^{A_A} = c^A for c ∈ C.
F^{A_A} = F^A for F ∈ F.
B^{A_A} = B^A for B ∈ F

 L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Marker writes $\text{Diag}_{el}(\mathbf{A})$.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

- (c_a)^{A_A} = a for a ∈ A.
 c^{A_A} = c^A for c ∈ C.
 F^{A_A} = F^A for F ∈ F.
 B^{A_A} = B^A for B ∈ F
- L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Marker writes $\text{Diag}_{el}(\mathbf{A})$. Hodges writes $\text{eldiag}(\mathbf{A})$.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

- $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$ • $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in C.$ • $F^{\mathbf{A}_A} = F^{\mathbf{A}} \text{ for } F \in \mathcal{F}.$
- $R^{\mathbf{A}_A} = R^{\mathbf{A}} \text{ for } R \in \mathcal{F}.$

 L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Marker writes $\text{Diag}_{el}(\mathbf{A})$. Hodges writes $\text{eldiag}(\mathbf{A})$. Monk writes $\text{Eldiag}(\mathbf{A})$.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

- $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$ • $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$
- $R^{\mathbf{A}_A} = R^{\mathbf{A}} \text{ for } R \in \mathcal{F}.$

 L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Marker writes $\text{Diag}_{el}(\mathbf{A})$. Hodges writes $\text{eldiag}(\mathbf{A})$. Monk writes $\text{Eldiag}(\mathbf{A})$. Pillay writes $D_c(\mathbf{A})$.

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

- $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$ • $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in C$
- $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$
- $I F^{\mathbf{A}_A} = F^{\mathbf{A}} \text{ for } F \in \mathcal{F}.$
- $R^{\mathbf{A}_A} = R^{\mathbf{A}} \text{ for } R \in \mathcal{F}.$

 L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Marker writes $\text{Diag}_{el}(\mathbf{A})$. Hodges writes $\text{eldiag}(\mathbf{A})$. Monk writes $\text{Eldiag}(\mathbf{A})$. Pillay writes $D_c(\mathbf{A})$. (Subscript *c*:

Let *L* be a language and let **A** be an *L*-structure. Let A_A be the expansion of **A** by constants and let L_A be the language of A_A .

Said differently: assume that L is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ and that \mathbf{A} is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol c_a . Let $\mathcal{C}_A = \mathcal{C} \cup \{c_a \mid a \in A\}$. Then \mathbf{A}_A will be the structure in the signature $(\mathcal{C}_A, \mathcal{F}, \mathcal{R}, \mathbf{ar})$ with universe A and

- $(c_a)^{\mathbf{A}_A} = a \text{ for } a \in A.$
- $c^{\mathbf{A}_A} = c^{\mathbf{A}} \text{ for } c \in \mathcal{C}.$
- $I \mathbf{F}^{\mathbf{A}_A} = F^{\mathbf{A}} \text{ for } F \in \mathcal{F}.$
- $R^{\mathbf{A}_A} = R^{\mathbf{A}} \text{ for } R \in \mathcal{F}.$

 L_A is the language of \mathbf{A}_A .

Definition. The elementary diagram of \mathbf{A} is $Th(\mathbf{A}_A)$.

Marker writes $\text{Diag}_{el}(\mathbf{A})$. Hodges writes $\text{eldiag}(\mathbf{A})$. Monk writes $\text{Eldiag}(\mathbf{A})$. Pillay writes $D_c(\mathbf{A})$. (Subscript *c*: the 'complete' diagram of \mathbf{A} .)

• The elementary diagram of a structure is a Henkin theory.

• The elementary diagram of a structure is a Henkin theory.

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
- Solution If B is a model of the elementary diagram of the *L*-structure A,
Observations

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
- Solution If B is a model of the elementary diagram of the *L*-structure A,

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
- If B is a model of the elementary diagram of the *L*-structure A, then B|_L contains an elementary submodel isomorphic to A.

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
- If B is a model of the elementary diagram of the *L*-structure A, then B|_L contains an elementary submodel isomorphic to A.
- (Slight rephrasing of the previous observation) If B is a model of the elementary diagram of the *L*-structure A,

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
- If B is a model of the elementary diagram of the *L*-structure A, then B|_L contains an elementary submodel isomorphic to A.
- (Slight rephrasing of the previous observation) If B is a model of the elementary diagram of the *L*-structure A,

- The elementary diagram of a structure is a Henkin theory.
- Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
- If B is a model of the elementary diagram of the *L*-structure A, then B|_L contains an elementary submodel isomorphic to A.
- (Slight rephrasing of the previous observation) If B is a model of the elementary diagram of the L-structure A, then the function φ: A → B|_L: a ↦ c_a^B is an elementary embedding.

Upward Löwenheim-Skolem Theorem.

Upward Löwenheim-Skolem Theorem.

Let \mathbf{A} be an infinite L structure.

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof.

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} .

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants.

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_A).

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_A). Let \mathbf{B} be a model of size κ of this set of sentences.

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_A). Let \mathbf{B} be a model of size κ of this set of sentences. (Why can we choose this size?)

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_A). Let \mathbf{B} be a model of size κ of this set of sentences. (Why can we choose this size?)

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_A). Let \mathbf{B} be a model of size κ of this set of sentences. (Why can we choose this size?) $\mathbf{B}|_{L_A}$ is a model of the elementary diagram of \mathbf{A} ,

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_{A}). Let \mathbf{B} be a model of size κ of this set of sentences. (Why can we choose this size?) $\mathbf{B}|_{L_{A}}$ is a model of the elementary diagram of \mathbf{A} , so $\mathbf{A} \preceq \mathbf{B}|_{L}$.

Upward Löwenheim-Skolem Theorem.

Let A be an infinite L structure. A has an elementary extension of cardinality κ for any $\kappa \ge \max\{|A|, |L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of \mathbf{A} . Let $C_{\text{new}} = \{c_{\alpha} \mid \alpha < \kappa\}$ be a set of κ 'new' constants. The set $\Delta_{\mathbf{A}} \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa\}$ is finitely satisfiable (in \mathbf{A}_{A}). Let \mathbf{B} be a model of size κ of this set of sentences. (Why can we choose this size?) $\mathbf{B}|_{L_{A}}$ is a model of the elementary diagram of \mathbf{A} , so $\mathbf{A} \preceq \mathbf{B}|_{L}$. \Box

Los-Vaught Test for completeness.

Assume that T is a consistent L-theory that

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

• is κ -categorical for some $\kappa \geq |L|$, and

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

• is κ -categorical for some $\kappa \geq |L|$, and

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.)

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete.

Los-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent.

Los-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that
Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},\$$

 $\textcircled{\mathbf{0}} \ \mathbf{B} \models T \cup \{\neg \sigma\}, \text{ and }$

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- $\textcircled{\mathbf{0}} \ \mathbf{B} \models T \cup \{\neg \sigma\}, \text{ and }$
- **3** $|\mathbf{A}|, |\mathbf{B}| \le |L|$

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- $\textcircled{\mathbf{0}} \ \mathbf{B} \models T \cup \{\neg \sigma\}, \text{ and }$
- **3** $|\mathbf{A}|, |\mathbf{B}| \le |L|$

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- $\ \, {\bf B}\models T\cup\{\neg\sigma\}, \text{and} \ \,$
- $(\mathbf{A} |, |\mathbf{B}| \le |L| \le \kappa.$

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- **2** $\mathbf{B} \models T \cup \{\neg\sigma\}$, and
- $(\mathbf{A} |, |\mathbf{B}| \le |L| \le \kappa.$

By the Upward LS-Theorem,

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- **2** $\mathbf{B} \models T \cup \{\neg\sigma\}$, and
- $(\mathbf{A} |, |\mathbf{B}| \le |L| \le \kappa.$

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}'$, $\mathbf{B} \preceq \mathbf{B}'$ such that $|\mathbf{A}'| = \kappa = |\mathbf{B}'|$.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- **2** $\mathbf{B} \models T \cup \{\neg\sigma\}$, and
- $|\mathbf{A}|, |\mathbf{B}| \le |L| \le \kappa.$

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}'$, $\mathbf{B} \preceq \mathbf{B}'$ such that $|\mathbf{A}'| = \kappa = |\mathbf{B}'|$. By κ -categoricity, $\mathbf{A}' \cong \mathbf{B}'$.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

2
$$\mathbf{B} \models T \cup \{\neg\sigma\}$$
, and

$$|\mathbf{A}|, |\mathbf{B}| \le |L| \le \kappa.$$

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \leq \mathbf{A}'$, $\mathbf{B} \leq \mathbf{B}'$ such that $|\mathbf{A}'| = \kappa = |\mathbf{B}'|$. By κ -categoricity, $\mathbf{A}' \cong \mathbf{B}'$. But $\mathbf{A}' \models \sigma$ and $\mathbf{B}' \models \neg \sigma$,

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

- **2** $\mathbf{B} \models T \cup \{\neg\sigma\}$, and
- $|\mathbf{A}|, |\mathbf{B}| \le |L| \le \kappa.$

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \leq \mathbf{A}'$, $\mathbf{B} \leq \mathbf{B}'$ such that $|\mathbf{A}'| = \kappa = |\mathbf{B}'|$. By κ -categoricity, $\mathbf{A}' \cong \mathbf{B}'$. But $\mathbf{A}' \models \sigma$ and $\mathbf{B}' \models \neg \sigma$, so this is a contradiction.

Łos-Vaught Test for completeness.

Assume that T is a consistent L-theory that

- is κ -categorical for some $\kappa \geq |L|$, and
- a has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist an L-sentence σ such that both $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ are consistent. There exist infinite structures **A** and **B** such that

$$\bullet \mathbf{A} \models T \cup \{\sigma\},$$

2
$$\mathbf{B} \models T \cup \{\neg\sigma\}$$
, and

$$|\mathbf{A}|, |\mathbf{B}| \le |L| \le \kappa.$$

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \leq \mathbf{A}'$, $\mathbf{B} \leq \mathbf{B}'$ such that $|\mathbf{A}'| = \kappa = |\mathbf{B}'|$. By κ -categoricity, $\mathbf{A}' \cong \mathbf{B}'$. But $\mathbf{A}' \models \sigma$ and $\mathbf{B}' \models \neg \sigma$, so this is a contradiction. \Box

• Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$.

• Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$.

• Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$. The theory axiomatized by $\Phi = \{\varphi_n \mid n = 2, 3, ...\}$ is complete

Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p,

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p,

- Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$. The theory axiomatized by $\Phi = \{\varphi_n \mid n = 2, 3, \ldots\}$ is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.

- Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$. The theory axiomatized by $\Phi = \{\varphi_n \mid n = 2, 3, \ldots\}$ is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- Solution For any field F, the theory of F-vector spaces satisfying Φ from above is complete.

- Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$. The theory axiomatized by $\Phi = \{\varphi_n \mid n = 2, 3, \ldots\}$ is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- Solution For any field F, the theory of F-vector spaces satisfying Φ from above is complete.

- Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$. The theory axiomatized by $\Phi = \{\varphi_n \mid n = 2, 3, \ldots\}$ is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- Solution For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- **③** The theory of dense linear orders without endpoints is complete.

- Let φ_n be the sentence $(\exists x_1) \cdots (\exists x_n) (\bigwedge_{i < j} x_i \neq x_j)$. The theory axiomatized by $\Phi = \{\varphi_n \mid n = 2, 3, \ldots\}$ is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- Solution For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- **③** The theory of dense linear orders without endpoints is complete.

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - $\bullet S is injective.$

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - $\bullet S is injective.$

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- Solution For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - \bullet S is injective.
 - $0 \notin \operatorname{im}(S).$

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- Solution For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - \bullet S is injective.
 - $0 \notin \operatorname{im}(S).$

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - \bullet S is injective.
 - $0 \notin \operatorname{im}(S).$
 - $x \neq 0 \text{ implies } x \in \text{im}(S).$

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - \bullet S is injective.
 - $0 \notin \operatorname{im}(S).$
 - $x \neq 0 \text{ implies } x \in \text{im}(S).$

- Let φ_n be the sentence (∃x₁) · · · (∃x_n)(∧_{i<j} x_i ≠ x_j). The theory axiomatized by Φ = {φ_n | n = 2, 3, . . .} is complete (in the language of equality).
- The theory of algebraically closed fields of characteristic zero is complete.
- For a given prime p, the theory of algebraically closed fields of characteristic p is complete.
- For any field F, the theory of F-vector spaces satisfying Φ from above is complete.
- S The theory of dense linear orders without endpoints is complete.
- The theory T in the language of one constant 0 and one unary function S(x), which is axiomatized by
 - \bullet S is injective.
 - $0 \notin \operatorname{im}(S).$
 - $x \neq 0 \text{ implies } x \in \text{im}(S).$

Exercise!

Exercise!

Give a complete first-order axiomatization for the field
Exercise!

Give a complete first-order axiomatization for the field

$$\mathbb{C} = \langle \{ \text{complex numbers} \}; \cdot, +, -, 0, 1 \rangle,$$

Exercise!

Give a complete first-order axiomatization for the field

$$\mathbb{C} = \langle \{ \text{complex numbers} \}; \cdot, +, -, 0, 1 \rangle,$$

and explain why your answer is correct.