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@ The elementary diagram of a structure is a Henkin theory.

@ Conversely, any Henkin theory is ‘the’ elementary diagram of its
canonical model.

© If B is a model of the elementary diagram of the L-structure A, then
B|, contains an elementary submodel isomorphic to A.

© (Slight rephrasing of the previous observation) If B is a model of the
elementary diagram of the L-structure A, then the function

¢: A — B|L: a+ cB is an elementary embedding.
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