## Elementary Diagrams

## The elementary diagram

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of A by constants

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of A by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently:

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$,

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of A by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.

## Definition.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.
Marker writes $\operatorname{Diag}_{\mathrm{el}}(\mathbf{A})$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.
Marker writes $\operatorname{Diag}_{\text {el }}(\mathbf{A})$. Hodges writes eldiag $(\mathbf{A})$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.
Marker writes $\operatorname{Diag}_{\text {el }}(\mathbf{A})$. Hodges writes eldiag(A). Monk writes Eldiag (A).

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.
Marker writes $\operatorname{Diag}_{\text {el }}(\mathbf{A})$. Hodges writes eldiag(A). Monk writes Eldiag(A). Pillay writes $\mathrm{D}_{c}(\mathbf{A})$.

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.
Marker writes $\operatorname{Diag}_{\text {el }}(\mathbf{A})$. Hodges writes eldiag(A). Monk writes Eldiag(A). Pillay writes $\mathrm{D}_{c}(\mathbf{A})$. (Subscript $c$ :

## The elementary diagram

Let $L$ be a language and let $\mathbf{A}$ be an $L$-structure. Let $\mathbf{A}_{A}$ be the expansion of $\mathbf{A}$ by constants and let $L_{A}$ be the language of $\mathbf{A}_{A}$.

Said differently: assume that $L$ is a language of signature $(\mathcal{C}, \mathcal{F}, \mathcal{R}$, ar $)$ and that $\mathbf{A}$ is a structure in this signature. For each $a \in A$, introduce a 'new' constant symbol $c_{a}$. Let $\mathcal{C}_{A}=\mathcal{C} \cup\left\{c_{a} \mid a \in A\right\}$. Then $\mathbf{A}_{A}$ will be the structure in the signature $\left(\mathcal{C}_{A}, \mathcal{F}, \mathcal{R}\right.$, ar $)$ with universe $A$ and
(1) $\left(c_{a}\right)^{\mathbf{A}_{A}}=a$ for $a \in A$.
(2) $c^{\mathbf{A}_{A}}=c^{\mathbf{A}}$ for $c \in \mathcal{C}$.
(3) $F^{\mathbf{A}_{A}}=F^{\mathbf{A}}$ for $F \in \mathcal{F}$.
(9) $R^{\mathbf{A}_{A}}=R^{\mathbf{A}}$ for $R \in \mathcal{F}$.
$L_{A}$ is the language of $\mathbf{A}_{A}$.
Definition. The elementary diagram of $\mathbf{A}$ is $\operatorname{Th}\left(\mathbf{A}_{A}\right)$.
Marker writes $\operatorname{Diag}_{\text {el }}(\mathbf{A})$. Hodges writes eldiag(A). Monk writes Eldiag(A). Pillay writes $\mathrm{D}_{c}(\mathbf{A})$. (Subscript $c$ : the 'complete' diagram of A.)

## Observations

## Observations

(1) The elementary diagram of a structure is a Henkin theory.

## Observations

(1) The elementary diagram of a structure is a Henkin theory.

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
(3) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$,

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
(3) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$,

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
(3) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$, then $\left.\mathbf{B}\right|_{L}$ contains an elementary submodel isomorphic to $\mathbf{A}$.

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
(3) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$, then $\left.\mathbf{B}\right|_{L}$ contains an elementary submodel isomorphic to $\mathbf{A}$.
(9) (Slight rephrasing of the previous observation) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure A,

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
(3) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$, then $\left.\mathbf{B}\right|_{L}$ contains an elementary submodel isomorphic to $\mathbf{A}$.
(9) (Slight rephrasing of the previous observation) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure A,

## Observations

(1) The elementary diagram of a structure is a Henkin theory.
(2) Conversely, any Henkin theory is 'the' elementary diagram of its canonical model.
(3) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$, then $\left.\mathbf{B}\right|_{L}$ contains an elementary submodel isomorphic to $\mathbf{A}$.
(9) (Slight rephrasing of the previous observation) If $\mathbf{B}$ is a model of the elementary diagram of the $L$-structure $\mathbf{A}$, then the function $\varphi:\left.\mathbf{A} \rightarrow \mathbf{B}\right|_{L}: a \mapsto c_{a}^{\mathbf{B}}$ is an elementary embedding.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem

Upward Löwenheim-Skolem Theorem.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let A be an infinite $L$ structure.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ).

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ). Let $\mathbf{B}$ be a model of size $\kappa$ of this set of sentences.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ). Let $\mathbf{B}$ be a model of size $\kappa$ of this set of sentences. (Why can we choose this size?)

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ). Let $\mathbf{B}$ be a model of size $\kappa$ of this set of sentences. (Why can we choose this size?)

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ). Let $\mathbf{B}$ be a model of size $\kappa$ of this set of sentences. (Why can we choose this size?) $\left.\mathbf{B}\right|_{L_{A}}$ is a model of the elementary diagram of $\mathbf{A}$,

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ). Let $\mathbf{B}$ be a model of size $\kappa$ of this set of sentences. (Why can we choose this size?) $\left.\mathbf{B}\right|_{L_{A}}$ is a model of the elementary diagram of $\mathbf{A}$, so $\left.\mathbf{A} \preceq \mathbf{B}\right|_{L}$.

## Upward Löwenheim-Skolem Theorem

## Upward Löwenheim-Skolem Theorem.

Let $\mathbf{A}$ be an infinite $L$ structure. A has an elementary extension of cardinality $\kappa$ for any $\kappa \geq \max \{|A|,|L|\}$.

Proof. Let $\Delta_{\mathbf{A}}$ be the elementary diagram of $\mathbf{A}$. Let $\mathcal{C}_{\text {new }}=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ be a set of $\kappa$ 'new' constants. The set $\Delta_{\mathbf{A}} \cup\left\{c_{\alpha} \neq c_{\beta} \mid \alpha<\beta<\kappa\right\}$ is finitely satisfiable (in $\mathbf{A}_{A}$ ). Let $\mathbf{B}$ be a model of size $\kappa$ of this set of sentences. (Why can we choose this size?) $\left.\mathbf{B}\right|_{L_{A}}$ is a model of the elementary diagram of $\mathbf{A}$, so $\left.\mathbf{A} \preceq \mathbf{B}\right|_{L} . \square$

## Łos-Vaught Test for completeness

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.)

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \models T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$,

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \models T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$,

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \vDash T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \vDash T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L|$

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \vDash T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L|$

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \vDash T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

By the Upward LS-Theorem,

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}^{\prime}$, $\mathbf{B} \preceq \mathbf{B}^{\prime}$ such that $\left|\mathbf{A}^{\prime}\right|=\kappa=\left|\mathbf{B}^{\prime}\right|$.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}^{\prime}$, $\mathbf{B} \preceq \mathbf{B}^{\prime}$ such that $\left|\mathbf{A}^{\prime}\right|=\kappa=\left|\mathbf{B}^{\prime}\right|$. By $\kappa$-categoricity, $\mathbf{A}^{\prime} \cong \mathbf{B}^{\prime}$.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}^{\prime}$, $\mathbf{B} \preceq \mathbf{B}^{\prime}$ such that $\left|\mathbf{A}^{\prime}\right|=\kappa=\left|\mathbf{B}^{\prime}\right|$. By $\kappa$-categoricity, $\mathbf{A}^{\prime} \cong \mathbf{B}^{\prime}$. But $\mathbf{A}^{\prime} \models \sigma$ and $\mathbf{B}^{\prime} \models \neg \sigma$,

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}^{\prime}$, $\mathbf{B} \preceq \mathbf{B}^{\prime}$ such that $\left|\mathbf{A}^{\prime}\right|=\kappa=\left|\mathbf{B}^{\prime}\right|$. By $\kappa$-categoricity, $\mathbf{A}^{\prime} \cong \mathbf{B}^{\prime}$. But $\mathbf{A}^{\prime} \models \sigma$ and $\mathbf{B}^{\prime} \models \neg \sigma$, so this is a contradiction.

## Łos-Vaught Test for completeness

## Los-Vaught Test for completeness.

Assume that $T$ is a consistent $L$-theory that
(1) is $\kappa$-categorical for some $\kappa \geq|L|$, and
(2) has no finite models.

Then $T$ is complete.
Proof. (By contradiction.) Assume that $T$ is not complete. There must exist an $L$-sentence $\sigma$ such that both $T \cup\{\sigma\}$ and $T \cup\{\neg \sigma\}$ are consistent. There exist infinite structures $\mathbf{A}$ and $\mathbf{B}$ such that
(1) $\mathbf{A} \equiv T \cup\{\sigma\}$,
(2) $\mathbf{B} \vDash T \cup\{\neg \sigma\}$, and
(3) $|\mathbf{A}|,|\mathbf{B}| \leq|L| \leq \kappa$.

By the Upward LS-Theorem, there exist elementary extensions $\mathbf{A} \preceq \mathbf{A}^{\prime}$, $\mathbf{B} \preceq \mathbf{B}^{\prime}$ such that $\left|\mathbf{A}^{\prime}\right|=\kappa=\left|\mathbf{B}^{\prime}\right|$. By $\kappa$-categoricity, $\mathbf{A}^{\prime} \cong \mathbf{B}^{\prime}$. But $\mathbf{A}^{\prime} \models \sigma$ and $\mathbf{B}^{\prime} \models \neg \sigma$, so this is a contradiction.

## Applications of the Łos-Vaught Test

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$,

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$,

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(3) The theory of dense linear orders without endpoints is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(3) The theory of dense linear orders without endpoints is complete.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.
(2) $0 \notin \operatorname{im}(S)$.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.
(2) $0 \notin \operatorname{im}(S)$.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.
(2) $0 \notin \operatorname{im}(S)$.
(0) $x \neq 0$ implies $x \in \operatorname{im}(S)$.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.
(2) $0 \notin \operatorname{im}(S)$.
(0) $x \neq 0$ implies $x \in \operatorname{im}(S)$.

## Applications of the Łos-Vaught Test

(1) Let $\varphi_{n}$ be the sentence $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i<j} x_{i} \neq x_{j}\right)$. The theory axiomatized by $\Phi=\left\{\varphi_{n} \mid n=2,3, \ldots\right\}$ is complete (in the language of equality).
(2) The theory of algebraically closed fields of characteristic zero is complete.
(3) For a given prime $p$, the theory of algebraically closed fields of characteristic $p$ is complete.
(9) For any field $\mathbb{F}$, the theory of $\mathbb{F}$-vector spaces satisfying $\Phi$ from above is complete.
(6) The theory of dense linear orders without endpoints is complete.
(6) The theory $T$ in the language of one constant 0 and one unary function $S(x)$, which is axiomatized by
(1) $S$ is injective.
(2) $0 \notin \operatorname{im}(S)$.
(0) $x \neq 0$ implies $x \in \operatorname{im}(S)$.

## Exercise!

## Exercise!

Give a complete first-order axiomatization for the field

## Exercise!

Give a complete first-order axiomatization for the field

$$
\mathbb{C}=\langle\{\text { complex numbers }\} ; \cdot,+,-, 0,1\rangle,
$$

## Exercise!

Give a complete first-order axiomatization for the field

$$
\mathbb{C}=\langle\{\text { complex numbers }\} ; \cdot,+,-, 0,1\rangle,
$$

and explain why your answer is correct.

