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The elementary diagram

Let L be a language and let A be an L-structure. Let AA be the expansion of
A by constants and let LA be the language of AA.

Said differently: assume that L is a language of signature (C, F , R, ar) and
that A is a structure in this signature. For each a ∈ A, introduce a ‘new’
constant symbol ca. Let CA = C ∪ {ca | a ∈ A}. Then AA will be the
structure in the signature (CA, F , R, ar) with universe A and

1 (ca)AA = a for a ∈ A.
2 cAA = cA for c ∈ C.
3 F AA = F A for F ∈ F .
4 RAA = RA for R ∈ F .

LA is the language of AA.

Definition. The elementary diagram of A is Th(AA).

Marker writes Diagel(A). Hodges writes eldiag(A). Monk writes Eldiag(A).
Pillay writes Dc(A). (Subscript c: the ‘complete’ diagram of A.)
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Observations

1 The elementary diagram of a structure is a Henkin theory.

2 Conversely, any Henkin theory is ‘the’ elementary diagram of its
canonical model.

3 If B is a model of the elementary diagram of the L-structure A, then
B|L contains an elementary submodel isomorphic to A.

4 (Slight rephrasing of the previous observation) If B is a model of the
elementary diagram of the L-structure A, then the function
φ : A → B|L : a 7→ cB

a is an elementary embedding.
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Upward Löwenheim-Skolem Theorem

Upward Löwenheim-Skolem Theorem.
Let A be an infinite L structure. A has an elementary extension of cardinality
κ for any κ ≥ max{|A|, |L|}.

Proof. Let ∆A be the elementary diagram of A. Let Cnew = {cα | α < κ} be
a set of κ ‘new’ constants. The set ∆A ∪ {cα ̸= cβ | α < β < κ} is finitely
satisfiable (in AA). Let B be a model of size κ of this set of sentences. (Why
can we choose this size?) B|LA

is a model of the elementary diagram of A, so
A ⪯ B|L. 2
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Łos-Vaught Test for completeness

Łos-Vaught Test for completeness.
Assume that T is a consistent L-theory that

1 is κ-categorical for some κ ≥ |L|, and
2 has no finite models.

Then T is complete.

Proof. (By contradiction.) Assume that T is not complete. There must exist
an L-sentence σ such that both T ∪ {σ} and T ∪ {¬σ} are consistent. There
exist infinite structures A and B such that

1 A |= T ∪ {σ},
2 B |= T ∪ {¬σ}, and
3 |A|, |B| ≤ |L| ≤ κ.

By the Upward LS-Theorem, there exist elementary extensions A ⪯ A′,
B ⪯ B′ such that |A′| = κ = |B′|. By κ-categoricity, A′ ∼= B′. But A′ |= σ
and B′ |= ¬σ, so this is a contradiction. 2
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Applications of the Łos-Vaught Test

1 Let φn be the sentence (∃x1) · · · (∃xn)(
∧

i<j xi ̸= xj). The theory
axiomatized by Φ = {φn | n = 2, 3, . . .} is complete (in the language of
equality).

2 The theory of algebraically closed fields of characteristic zero is
complete.

3 For a given prime p, the theory of algebraically closed fields of
characteristic p is complete.

4 For any field F, the theory of F-vector spaces satisfying Φ from above is
complete.

5 The theory of dense linear orders without endpoints is complete.
6 The theory T in the language of one constant 0 and one unary function

S(x), which is axiomatized by

1 S is injective.
2 0 /∈ im(S).
3 x ̸= 0 implies x ∈ im(S).
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3 For a given prime p, the theory of algebraically closed fields of
characteristic p is complete.

4 For any field F, the theory of F-vector spaces satisfying Φ from above is
complete.

5 The theory of dense linear orders without endpoints is complete.
6 The theory T in the language of one constant 0 and one unary function

S(x), which is axiomatized by
1 S is injective.
2 0 /∈ im(S).
3 x ̸= 0 implies x ∈ im(S).
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Exercise!

Give a complete first-order axiomatization for the field

C = ⟨{complex numbers}; ·, +, −, 0, 1⟩,

and explain why your answer is correct.
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