The category of L-structures

Functions $=$ morphisms of sets

Functions $=$ morphisms of sets

In mathematics, we typically compare structures of the same type with functions:

Functions $=$ morphisms of sets

In mathematics, we typically compare structures of the same type with functions: $f: A \rightarrow B$.

Functions $=$ morphisms of sets

In mathematics, we typically compare structures of the same type with functions: $f: A \rightarrow B$. Starting with a set-function, there are derived concepts:

Functions $=$ morphisms of sets

In mathematics, we typically compare structures of the same type with functions: $f: A \rightarrow B$. Starting with a set-function, there are derived concepts:

Concepts derived from "morphism"

Concepts derived from "morphism"

(1) image, coimage

Concepts derived from "morphism"

(1) image, coimage

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map
(c) embedding, isomorphism

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map
(c) embedding, isomorphism

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map
(9) embedding, isomorphism
(6) product, coproduct

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map
(9) embedding, isomorphism
(6) product, coproduct

Concepts derived from "morphism"

(1) image, coimage
(2) substructure, quotient
(3) natural map, induced map, inclusion map
(9) embedding, isomorphism
(6) product, coproduct

Morphisms of first-order structures

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature,

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to \mathbf{B},

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$,

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ which is invertible as a set-function,

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ which is invertible as a set-function, and which has the property that $h^{-1}: \mathbf{B} \rightarrow \mathbf{A}$ is also a homomorphism.)

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ which is invertible as a set-function, and which has the property that $h^{-1}: \mathbf{B} \rightarrow \mathbf{A}$ is also a homomorphism.) An isomorphism from a structure to itself,

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ which is invertible as a set-function, and which has the property that $h^{-1}: \mathbf{B} \rightarrow \mathbf{A}$ is also a homomorphism.) An isomorphism from a structure to itself, $h: \mathbf{A} \rightarrow \mathbf{A}$,

Morphisms of first-order structures

Definition. If \mathbf{A} and \mathbf{B} are structures of the same signature, then a homomorphism from \mathbf{A} to $\mathbf{B}, h: \mathbf{A} \rightarrow \mathbf{B}$, is a function $h: A \rightarrow B$ between their universes which preserves the structure in the sense that
(1) (Constants are preserved) $h\left(c^{\mathbf{A}}\right)=c^{\mathbf{B}}$ for every constant symbol c.
(2) (Functions/Operations are preserved)
$h\left(F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ for every operation symbol F.
(3) (Relations/Predicates are preserved) $R^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\top \Longrightarrow R^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)=\top$ for every predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ which is invertible as a set-function, and which has the property that $h^{-1}: \mathbf{B} \rightarrow \mathbf{A}$ is also a homomorphism.) An isomorphism from a structure to itself, $h: \mathbf{A} \rightarrow \mathbf{A}$, is an automorphism.

"Substructure" captures "image"

"Substructure" captures "image"

Definition.

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of \mathbf{B},

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$,

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and

Definition. If B is a structure, then S is a substructure of $B, S \leq B$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

Definition. If B is a structure, then S is a substructure of $B, S \leq B$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them.

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them.

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

Exercise.

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

Exercise. Give an example of a poset $\langle P ; \leq\rangle$,

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

Exercise. Give an example of a poset $\langle P ; \leq\rangle$, a subset $P^{\prime} \subseteq P$,

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

Exercise. Give an example of a poset $\langle P ; \leq\rangle$, a subset $P^{\prime} \subseteq P$, and a relation $\leq^{\prime}(\subseteq \leq)$ on P^{\prime}

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

Exercise. Give an example of a poset $\langle P ; \leq\rangle$, a subset $P^{\prime} \subseteq P$, and a relation $\leq^{\prime}(\subseteq \leq)$ on P^{\prime} such that $(\forall x)(\forall y)\left(\left(x \leq^{\prime} y\right) \rightarrow(x \leq y)\right)$,

"Substructure" captures "image"

Definition. If \mathbf{B} is a structure, then \mathbf{S} is a substructure of $\mathbf{B}, \mathbf{S} \leq \mathbf{B}$, if
(1) $S \subseteq B$ and
(2) the inclusion map $\iota: S \rightarrow B$ preserves and reflects the constants, operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will automatically reflect them. But the inclusion could preserve the predicates without reflecting them. (Example?)

Exercise. Give an example of a poset $\langle P ; \leq\rangle$, a subset $P^{\prime} \subseteq P$, and a relation $\leq^{\prime}(\subseteq \leq)$ on P^{\prime} such that $(\forall x)(\forall y)\left(\left(x \leq^{\prime} y\right) \rightarrow(x \leq y)\right)$, where $\left\langle P^{\prime} ; \leq^{\prime}\right\rangle$ is not a substructure of $\langle P ; \leq\rangle$.

Embeddings

Embeddings

In the definition of 'substructure', the inclusion map played a special role.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding,

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$,

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Remark.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Remark. A bijective embedding is an isomorphism.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Remark. A bijective embedding is an isomorphism.
Test yourself!

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Remark. A bijective embedding is an isomorphism.

Test yourself!

(1) Give an example of an injective homomorphism of graphs that is not an embedding.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Remark. A bijective embedding is an isomorphism.

Test yourself!

(1) Give an example of an injective homomorphism of graphs that is not an embedding.

Embeddings

In the definition of 'substructure', the inclusion map played a special role. If we replace the inclusion map with an arbitrary injective function, we obtain the definition of embedding.

Definition. An embedding, $h: \mathbf{A} \rightarrow \mathbf{B}$, is an injective function $h: A \rightarrow B$ that preserves and reflects the constants, operations, and the predicates.

Remark. A bijective embedding is an isomorphism.

Test yourself!

(1) Give an example of an injective homomorphism of graphs that is not an embedding.
(2) Give an example of an bijective homomorphism of posets that is not an isomorphism.

"Quotient" captures "coimage", Part 1

"Quotient" captures "coimage", Part 1

Definition.

"Quotient" captures "coimage", Part 1

Definition. Let \mathbf{A} be a structure and let θ be an equivalence relation on A.

"Quotient" captures "coimage", Part 1

Definition. Let \mathbf{A} be a structure and let θ be an equivalence relation on A. Call θ a congruence of \mathbf{A} if for each operation symbol F we have

"Quotient" captures "coimage", Part 1

Definition. Let \mathbf{A} be a structure and let θ be an equivalence relation on A. Call θ a congruence of \mathbf{A} if for each operation symbol F we have

$$
a_{1} \equiv a_{1}^{\prime} \quad(\bmod \theta)
$$

"Quotient" captures "coimage", Part 1

Definition. Let \mathbf{A} be a structure and let θ be an equivalence relation on A. Call θ a congruence of \mathbf{A} if for each operation symbol F we have

$$
a_{1} \equiv a_{1}^{\prime} \quad(\bmod \theta)
$$

"Quotient" captures "coimage", Part 1

Definition. Let \mathbf{A} be a structure and let θ be an equivalence relation on A. Call θ a congruence of \mathbf{A} if for each operation symbol F we have

$$
\begin{aligned}
a_{1} & \equiv a_{1}^{\prime} \quad(\bmod \theta) \\
& \vdots \\
a_{n} & \equiv a_{n}^{\prime} \quad(\bmod \theta)
\end{aligned}
$$

"Quotient" captures "coimage", Part 1

Definition. Let \mathbf{A} be a structure and let θ be an equivalence relation on A. Call θ a congruence of \mathbf{A} if for each operation symbol F we have

$$
\begin{aligned}
a_{1} & \equiv a_{1}^{\prime} \quad(\bmod \theta) \\
& \vdots \\
a_{n} & \equiv a_{n}^{\prime} \quad(\bmod \theta)
\end{aligned}
$$

$$
\Rightarrow \quad F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \equiv F^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \quad(\bmod \theta)
$$

"Quotient" captures "coimage", Part 2

"Quotient" captures "coimage", Part 2

Definition.

"Quotient" captures "coimage", Part 2

Definition. Let A be an L-structure and let θ be a congruence on A.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}$

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top \operatorname{iff} \exists a_{i}^{\prime}, i=1, \ldots, n$,

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top \operatorname{iff} \exists a_{i}^{\prime}, i=1, \ldots, n$,

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=$ 丁 iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

Remark.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

Remark. This definition of \mathbf{A} / θ makes the set A / θ the universe of an L-structure for which the natural map $\nu: A \rightarrow A / \theta: a \mapsto a / \theta$ is a homomorphism.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

Remark. This definition of \mathbf{A} / θ makes the set A / θ the universe of an L-structure for which the natural map $\nu: A \rightarrow A / \theta: a \mapsto a / \theta$ is a homomorphism. Moreover, the quotient uses the weakest interpretation of the predicates that makes the natural map a homomorphism.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

Remark. This definition of \mathbf{A} / θ makes the set A / θ the universe of an L-structure for which the natural map $\nu: A \rightarrow A / \theta: a \mapsto a / \theta$ is a homomorphism. Moreover, the quotient uses the weakest interpretation of the predicates that makes the natural map a homomorphism.

Exercise.

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

Remark. This definition of \mathbf{A} / θ makes the set A / θ the universe of an L-structure for which the natural map $\nu: A \rightarrow A / \theta: a \mapsto a / \theta$ is a homomorphism. Moreover, the quotient uses the weakest interpretation of the predicates that makes the natural map a homomorphism.

Exercise. Find all the quotients (up to isomorphism)

"Quotient" captures "coimage", Part 2

Definition. Let \mathbf{A} be an L-structure and let θ be a congruence on A. The quotient \mathbf{A} / θ has universe $A / \theta=\{a / \theta \mid a \in A\}=\left\{[a]_{\theta} \mid a \in A\right\}$ and
(1) (Constants) $c^{\mathbf{A} / \theta}=c^{\mathbf{A}} / \theta$.
(2) (Functions/Operations) $F^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=F^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
(3) (Relations/Predicates) $R^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=\top$ iff $\exists a_{i}^{\prime}, i=1, \ldots, n$, such that $a_{i} \equiv a_{i}^{\prime}(\bmod \theta)$ for all i and $R^{\mathbf{A}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\top$.

Remark. This definition of \mathbf{A} / θ makes the set A / θ the universe of an L-structure for which the natural map $\nu: A \rightarrow A / \theta: a \mapsto a / \theta$ is a homomorphism. Moreover, the quotient uses the weakest interpretation of the predicates that makes the natural map a homomorphism.

Exercise. Find all the quotients (up to isomorphism) of the symmetric graph $\langle V ; E(x, y)\rangle$ that is a 4 -element path.

Products

Products

Definition.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P}

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$,

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)

$$
F \prod_{i \in I} \mathbf{A}_{i}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I} .
$$

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)

$$
F \prod_{i \in I} \mathbf{A}_{i}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I} .
$$

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)
$F^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I}$.
(3) (Predicates) $R^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\top$ iff $R^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)=\top$ for all i.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)
$F^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I}$.
(3) (Predicates) $R^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\top$ iff $R^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)=\top$ for all i.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)
$F^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I}$.
(3) (Predicates) $R^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\top$ iff $R^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)=\top$ for all i.

Exercise.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)
$F^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I}$.
(3) (Predicates) $R^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\top$ iff $R^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)=\top$ for all i.

Exercise. Describe the product of two symmetric, loopless graphs,

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)
$F^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I}$.
(3) (Predicates) $R^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\top$ iff $R^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)=\top$ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are both 3 -vertex paths.

Products

Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures. The (Cartesian) product of this indexed set is the L-structure \mathbf{P} whose universe is $P=\prod_{i \in I} A_{i}$, the Cartesian product of the universes of members of \mathcal{K}. We choose the interpretations of the constants, operations, and predicates in the weakest possible way to ensure that all of the coordinate projection functions $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$ are homomorphisms $\pi_{i}: \mathbf{P} \rightarrow \mathbf{A}_{i}$. Specifically,
(1) (Constants) $c^{\prod_{i \in I} \mathbf{A}_{i}}=\left(c^{\mathbf{A}_{i}}\right)_{i \in I}$.
(2) (Operations)
$F^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\left(F^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)\right)_{i \in I}$.
(3) (Predicates) $R^{\prod_{i \in I} \mathbf{A}_{i}}\left(\left(a_{1 i}\right)_{i \in I}, \ldots,\left(a_{n i}\right)_{i \in I}\right)=\top$ iff $R^{\mathbf{A}_{i}}\left(a_{1 i}, \ldots, a_{n i}\right)=\top$ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are both 3 -vertex paths. Try this exercise again when the graphs have loops on every vertex.

Reduced products and ultraproducts, Part 1

Reduced products and ultraproducts, Part 1

Definitions.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward)

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward)

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection)

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection)

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$).

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing I_{0}.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing I_{0}.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper and for every subset $U \subseteq I$

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper and for every subset $U \subseteq I$ either $U \in \mathcal{F}$

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper and for every subset $U \subseteq I$ either $U \in \mathcal{F}$ or $I \backslash U \in \mathcal{F}$.

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper and for every subset $U \subseteq I$ either $U \in \mathcal{F}$ or $I \backslash U \in \mathcal{F}$. (Check:

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper and for every subset $U \subseteq I$ either $U \in \mathcal{F}$ or $I \backslash U \in \mathcal{F}$. (Check: An ultrafilter is principal if and only if $\mathcal{F}=\left(I_{0}\right)$ where $I_{0}=\left\{i_{0}\right\}$ is a singleton.)

Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset $\mathcal{F} \subseteq \mathcal{P}(I)$ that is
(1) (Closed upward) $U \in \mathcal{F}$ and $U \subseteq V$ jointly imply that $V \in \mathcal{F}$.
(2) (Closed under finite intersection) If $U, V \in \mathcal{F}$, then $U \cap V \in \mathcal{F}$.

Related terms.

(1) A filter is proper if $\mathcal{F} \neq \mathcal{P}(I)$ (equivalently $\emptyset \notin \mathcal{F}$). Otherwise the filter is improper.
(2) A filter is principal if there is some subset $I_{0} \subseteq I$ such that \mathcal{F} is the set of all subsets of I containing $I_{0} . \mathcal{F}=\left(I_{0}\right)$. Otherwise it is nonprincipal.
(3) A filter is an ultrafilter if it is proper and for every subset $U \subseteq I$ either $U \in \mathcal{F}$ or $I \backslash U \in \mathcal{F}$. (Check: An ultrafilter is principal if and only if $\mathcal{F}=\left(I_{0}\right)$ where $I_{0}=\left\{i_{0}\right\}$ is a singleton.)

Reduced products and ultraproducts, Part 2

Reduced products and ultraproducts, Part 2

(Bad!) Definition.

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I.

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I. The binary relation $\theta_{\mathcal{F}}$ on $\prod_{i \in I} A_{i}$ defined by

$$
\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \in \theta_{\mathcal{F}} \quad \text { iff } \quad \llbracket \mathbf{a}=\mathbf{a}^{\prime} \rrbracket \in \mathcal{F}
$$

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I. The binary relation $\theta_{\mathcal{F}}$ on $\prod_{i \in I} A_{i}$ defined by

$$
\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \in \theta_{\mathcal{F}} \quad \text { iff } \quad \llbracket \mathbf{a}=\mathbf{a}^{\prime} \rrbracket \in \mathcal{F}
$$

is a congruence on $\prod_{i \in I} \mathbf{A}_{i}$

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I. The binary relation $\theta_{\mathcal{F}}$ on $\prod_{i \in I} A_{i}$ defined by

$$
\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \in \theta_{\mathcal{F}} \quad \text { iff } \quad \llbracket \mathbf{a}=\mathbf{a}^{\prime} \rrbracket \in \mathcal{F}
$$

is a congruence on $\prod_{i \in I} \mathbf{A}_{i}$ called the filter congruence associated to \mathcal{F}.

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I. The binary relation $\theta_{\mathcal{F}}$ on $\prod_{i \in I} A_{i}$ defined by

$$
\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \in \theta_{\mathcal{F}} \quad \text { iff } \quad \llbracket \mathbf{a}=\mathbf{a}^{\prime} \rrbracket \in \mathcal{F}
$$

is a congruence on $\prod_{i \in I} \mathbf{A}_{i}$ called the filter congruence associated to \mathcal{F}. (Check that it is a congruence!)

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I. The binary relation $\theta_{\mathcal{F}}$ on $\prod_{i \in I} A_{i}$ defined by

$$
\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \in \theta_{\mathcal{F}} \quad \text { iff } \quad \llbracket \mathbf{a}=\mathbf{a}^{\prime} \rrbracket \in \mathcal{F}
$$

is a congruence on $\prod_{i \in I} \mathbf{A}_{i}$ called the filter congruence associated to \mathcal{F}. (Check that it is a congruence!) The quotient $\left(\prod_{i \in I} \mathbf{A}_{i}\right) / \theta_{\mathcal{F}}$ is a reduced product of the algebras in \mathcal{K}.

Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let $\mathcal{K}=\left\{\mathbf{A}_{i} \mid i \in I\right\}$ be an indexed set of L-structures and let \mathcal{F} be a filter on I. The binary relation $\theta_{\mathcal{F}}$ on $\prod_{i \in I} A_{i}$ defined by

$$
\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \in \theta_{\mathcal{F}} \quad \text { iff } \quad \llbracket \mathbf{a}=\mathbf{a}^{\prime} \rrbracket \in \mathcal{F}
$$

is a congruence on $\prod_{i \in I} \mathbf{A}_{i}$ called the filter congruence associated to \mathcal{F}. (Check that it is a congruence!) The quotient $\left(\prod_{i \in I} \mathbf{A}_{i}\right) / \theta_{\mathcal{F}}$ is a reduced product of the algebras in \mathcal{K}. If \mathcal{F} is an ultrafilter, then the reduced product $\left(\prod_{i \in I} \mathbf{A}_{i}\right) / \theta_{\mathcal{F}}$ is called an ultraproduct of the algebras in \mathcal{K}.

