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Functions = morphisms of sets

In mathematics, we typically compare structures of the same type with functions:
f : A → B. Starting with a set-function, there are derived concepts:
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Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage

2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage

2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient

3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient

3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map

4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map

4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism

5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism

5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Concepts derived from “morphism”

1 image, coimage
2 substructure, quotient
3 natural map, induced map, inclusion map
4 embedding, isomorphism
5 product, coproduct

The category of L-structures 3 / 11



Morphisms of first-order structures

Definition. If A and B are structures of the same signature, then a
homomorphism from A to B, h : A → B, is a function h : A → B between
their universes which preserves the structure in the sense that

1 (Constants are preserved) h(cA) = cB for every constant symbol c.
2 (Functions/Operations are preserved)

h(F A(a1, . . . , an)) = F B(h(a1), . . . , h(an)) for every operation
symbol F .

3 (Relations/Predicates are preserved)
RA(a1, . . . , an) = ⊤ =⇒ RB(h(a1), . . . , h(an)) = ⊤ for every
predicate symbol R.

Definition. An isomorphism is an invertible homomorphism.
(It is a homomorphism h : A → B which is invertible as a set-function, and
which has the property that h−1 : B → A is also a homomorphism.) An
isomorphism from a structure to itself, h : A → A, is an automorphism.
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“Substructure” captures “image”

Definition. If B is a structure, then S is a substructure of B, S ≤ B, if

1 S ⊆ B and
2 the inclusion map ι : S → B preserves and reflects the constants,

operations, and the predicates.

If the inclusion map preserves the constants and operations, then it will
automatically reflect them. But the inclusion could preserve the predicates
without reflecting them. (Example?)

Exercise. Give an example of a poset ⟨P ; ≤⟩, a subset P ′ ⊆ P , and a relation
≤′ (⊆≤) on P ′ such that (∀x)(∀y)((x ≤′ y) → (x ≤ y)), where ⟨P ′; ≤′⟩ is
not a substructure of ⟨P ; ≤⟩.
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Embeddings

In the definition of ‘substructure’, the inclusion map played a special role. If
we replace the inclusion map with an arbitrary injective function, we obtain
the definition of embedding.

Definition. An embedding, h : A → B, is an injective function h : A → B
that preserves and reflects the constants, operations, and the predicates.

Remark. A bijective embedding is an isomorphism.

Test yourself!

1 Give an example of an injective homomorphism of graphs that is not an
embedding.

2 Give an example of an bijective homomorphism of posets that is not an
isomorphism.
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“Quotient” captures “coimage”, Part 1

Definition. Let A be a structure and let θ be an equivalence relation on A.
Call θ a congruence of A if for each operation symbol F we have

a1 ≡ a′
1 (mod θ)

...
an ≡ a′

n (mod θ)

⇒ F A(a1, . . . , an) ≡ F A(a′
1, . . . , a′

n) (mod θ)
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“Quotient” captures “coimage”, Part 2

Definition. Let A be an L-structure and let θ be a congruence on A. The
quotient A/θ has universe A/θ = {a/θ | a ∈ A} = {[a]θ | a ∈ A} and

1 (Constants) cA/θ = cA/θ.
2 (Functions/Operations) F A/θ(a1/θ, . . . , an/θ) = F A(a1, . . . , an)/θ.
3 (Relations/Predicates) RA/θ(a1/θ, . . . , an/θ) = ⊤ iff ∃a′

i, i = 1, . . . , n,
such that ai ≡ a′

i (mod θ) for all i and RA(a′
1, . . . , a′

n) = ⊤.

Remark. This definition of A/θ makes the set A/θ the universe of an
L-structure for which the natural map ν : A → A/θ : a 7→ a/θ is a
homomorphism. Moreover, the quotient uses the weakest interpretation of the
predicates that makes the natural map a homomorphism.

Exercise. Find all the quotients (up to isomorphism) of the symmetric graph
⟨V ; E(x, y)⟩ that is a 4-element path.
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Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition.

Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures.

The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P

whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai,

the Cartesian product of the universes of members of K. We
choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K.

We
choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai.

Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .

3 (Predicates) R
∏

i∈I
Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff

RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .

3 (Predicates) R
∏

i∈I
Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff

RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise.

Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs,

which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths.

Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Products

Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures. The
(Cartesian) product of this indexed set is the L-structure P whose universe
is P =

∏
i∈I Ai, the Cartesian product of the universes of members of K. We

choose the interpretations of the constants, operations, and predicates in the
weakest possible way to ensure that all of the coordinate projection functions
πi :

∏
i∈I Ai → Ai are homomorphisms πi : P → Ai. Specifically,

1 (Constants) c
∏

i∈I
Ai = (cAi)i∈I .

2 (Operations)
F

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = (F Ai(a1i, . . . , ani))i∈I .
3 (Predicates) R

∏
i∈I

Ai((a1i)i∈I , . . . , (ani)i∈I) = ⊤ iff
RAi(a1i, . . . , ani) = ⊤ for all i.

Exercise. Describe the product of two symmetric, loopless graphs, which are
both 3-vertex paths. Try this exercise again when the graphs have loops on
every vertex.

The category of L-structures 9 / 11



Reduced products and ultraproducts, Part 1

Definitions. Let I be a set. A filter on I is a nonempty subset F ⊆ P(I) that
is

1 (Closed upward) U ∈ F and U ⊆ V jointly imply that V ∈ F .
2 (Closed under finite intersection) If U, V ∈ F , then U ∩ V ∈ F .

Related terms.

1 A filter is proper if F ̸= P(I) (equivalently ∅ /∈ F). Otherwise the filter
is improper.

2 A filter is principal if there is some subset I0 ⊆ I such that F is the set
of all subsets of I containing I0. F = (I0). Otherwise it is nonprincipal.

3 A filter is an ultrafilter if it is proper and for every subset U ⊆ I either
U ∈ F or I \ U ∈ F . (Check: An ultrafilter is principal if and only if
F = (I0) where I0 = {i0} is a singleton.)
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Reduced products and ultraproducts, Part 2

(Bad!) Definition. Let K = {Ai | i ∈ I} be an indexed set of L-structures
and let F be a filter on I . The binary relation θF on

∏
i∈I Ai defined by

(a, a′) ∈ θF iff [[a = a′]] ∈ F

is a congruence on
∏

i∈I Ai called the filter congruence associated to F .
(Check that it is a congruence!) The quotient (

∏
i∈I Ai)/θF is a reduced

product of the algebras in K. If F is an ultrafilter, then the reduced product
(
∏

i∈I Ai)/θF is called an ultraproduct of the algebras in K.
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