
The Completeness Theorem

Σ |= σ iff Σ ⊢ σ
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Nature decides truth

The relation |= defines a Galois connection between L-structures and
L-sentences.

We write Σ |= σ to indicate that σ lies in the Galois closure of Σ.
(i.e. σ ∈ Σ⊥⊥).

How can we characterize the Galois closure of Σ “internally”? (meaning: how
can you determine whether σ ∈ Σ⊥⊥ without referring to structures?)
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Humans decide provability

We create a machine called “proof”, where σ is provable from Σ (Σ ⊢ σ)
iff σ is a semantic consequence of Σ (Σ |= σ).

If our only goal is to characterize Galois closure internally, then we only
demand that our proof calculus be

Sound (Σ ⊢ σ implies Σ |= σ), and

Complete (Σ |= σ implies Σ ⊢ σ).

But, since we are humans, we shall also demand that

proofs should be recognizable as proofs.

Definition. Σ ⊢ σ means there is a finite sequence of formulas

α1, α2, . . . , αn = σ

where each αi is an axiom, a member of Σ, or is derivable from earlier terms
in the sequence using a rule of inference.
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What is needed?

We should choose axioms so that they are recognizable instances of |= α.

We should choose rules of inference, typically written α1,...,αm

β , so that they
are recognizable instances of {α1, . . . , αm} |= β.

“Should” means: if we do this, then soundness will hold. We take:

Axioms.

1 All tautologies.

2 = is an equivalence relation on terms.

3 Can substitute equals for equals without changing meaning.

4 (∀xi(α → β)) → (∀xiα → ∀xiβ)
5 (α → ∀xiα) if xi does not appear in formula α.

6 (∃xi(xi = t) if xi does not occur in term t.

Rules.

1 (Modus Ponens) α,α→β
β

2 (Generalization) φ
(∀xi)φ
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Example

Suppose we have a partial proof

α1, α2, . . . , αk

where some αi has the structure P → Q for some P and Q and some αj has
the structure Q → R for some Q and R. It might be tempting to select
αk+1 = P → R and ‘reason’ that P → R should be a consequence of
{P → Q, Q → R}. But P →Q,Q→R

P →R is not one of our inference rules. Instead,
one should argue as follows. Continue

α1, . . . , (P → Q), . . . , (Q → R), . . . , αk

with

αk, ((P → Q) → ((Q → R) → (P → R))), ((Q → R) → (P → R)), (P → R).
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Stage 1: the Deduction Theorem

Observe that Σ |= σ iff Σ ∪ {¬σ} |= ⊥. (Note: ∀A(A ̸|= ⊥). I.e., ⊥ is not
satisfiable.)

Therefore we want Σ ⊢ σ iff Σ ∪ {¬σ} ⊢ ⊥.

More generally, Σ ∪ {α} |= β iff Σ |= (α → β).

So we want Σ ∪ {α} ⊢ β iff Σ ⊢ (α → β).

“If” is direct and easy. (Show!)

“Only if” is proved by induction on the length of a proof of Σ ∪ {α} ⊢ β.
It is also easy.
[Idea: Replace every αi in a (Σ ∪ {α})-proof of β with α → αi to obtain a
Σ-proof of (α → β).]

The second part is called:

The Deduction Theorem. If Σ ∪ {α} ⊢ β, then Σ ⊢ (α → β).

Corollary. Σ ∪ {α} ⊢ ⊥ iff Σ ⊢ ¬α.
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Application

Our goal is to prove that Σ |= σ implies Σ ⊢ σ.

Equivalently, if Γ := Σ ∪ {¬σ} is not satisfiable (Γ |= ⊥), then it is not
consistent (Γ ⊢ ⊥).

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model).
(This reformulation is worth remembering! )

Strategy to achieve our goal:

1 Show that a consistent theory Γ can be enlarged to a “Henkin theory”.
2 Show that a Henkin theory has a model.
3 Show that a model of an enlargement of Γ is also a model of Γ.
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Henkin theory

Df. A theory Γ is a Henkin theory if it is

1 consistent,
2 complete, and
3 has witnesses.

Meanings:

1 A theory is consistent if you can’t prove falsity from it:
Γ ̸⊢ ⊥.

2 A consistent theory Γ is complete if it decides every sentence:
For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.

3 A theory Γ has witnesses if whenever φ(x) is a formula with at most
one free variable, then ((∃x)φ(x) → φ(c)) ∈ Γ for some constant c.

Henkin’s key insight is that if A is a structure, then the theory of its
“expansion by constants”, Γ = Th(AA), is a Henkin theory. Conversely, every
Henkin theory arises in this way. Moreover, Th(AA) ‘explains’ clearly how to
construct its canonical model, AA.
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The enlargement steps

Lindenbaum’s Theorem. Every consistent L-theory can be enlarged to a
complete L-theory.

[Idea of proof: if Γ ̸⊢ σ, then Γ ∪ {¬σ} ̸⊢ ⊥, so Γ ∪ {¬σ} is a consistent
enlargement of Γ. Keep doing this until you arrive at a complete theory.]

Henkin’s Theorem. Every consistent theory can be enlarged to a consistent
theory with witnesses, provided we allow ourselves to enlarge the language to
include more constant symbols.

[Idea of proof: suppose Γ ∪ {(∃x)φ(x) → φ(c)} ⊢ ⊥ where c /∈ L. Then
Γ ⊢ ¬((∃x)φ(x) → φ(c)), or Γ ⊢ (∃x)φ(x) ∧ ¬φ(c). Need quantifier axioms
and rules which permit this deduction:

(∃x)φ(x) ∧ ¬φ(c), (∀x)((∃x)φ(x) ∧ ¬φ(x)), (∃x)φ(x) ∧ ¬(∃x)φ(x)), ⊥.

Thus Γ ⊢ ⊥. Now repeat the idea of Lindenbaum’s Theorem with σ equal to
¬((∃x)φ(x) → φ(c)).]
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Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)

Let C be the set of constants in L. It will be the domain of an L-structure.

If c ∈ L, then define cC = c ∈ C.

If R(x1, . . . , xn) is a predicate symbol, declare that RC(c1, . . . , cn) is true if
R(c1, . . . , cn) ∈ H .

If F (x1, . . . , xn) is a function symbol, declare that FC(c1, . . . , cn) = d is true
if (F (c1, . . . , cn) = d) ∈ H .

Define an equivalence relation θ on C by c ≡ d (mod θ) if (c = d) ∈ H .

It will be the case that C/θ |= H . In fact, H = Th(C/θ). C/θ is called the
Henkin model of H .
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Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ
has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is
satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model. Then Σ |= ⊥, so
Σ ⊢ ⊥. If α1, . . . , αk, ⊥ is a Σ-proof of ⊥, then let Σ0 ⊆ Σ be the set of
sentences from Σ that are used in the proof. The given proof is a Σ0-proof of
⊥. This shows that the finite subset Σ0 ⊆ Σ has no model.]
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Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if T is
an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L′ be the expansion of L to include an infinite set C = {c0, c1, . . .} of
‘new’ constant symbols. Let T ′ be the set of sentences T ∪ {ci ̸= cj | i ̸= j}.
T ′ is finitely satisfiable, so it is satisfiable. Any model of T ′ is an infinite
model of T . 2
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Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if T = Th(R), then T has a model with a positive
infinitesimal. That is, T has a model R′ that is elementarily equivalent to R
which has an element ε such that 0 < ε < 1/n holds for every positive integer
n.

Let L′ be the expansion of L to include a single new constant symbol ε. Let
T ′ be the set of sentences T ∪ {0 < ε < 1/n | n = 1, 2, 3, . . .}. T ′ is finitely
satisfiable, so it is satisfiable. Any model of T ′ is a model of T (hence is a
field elementarily equivalent to R) which has a positive infinitesimal. 2
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Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let K be the class of all L-structures. Let K0 ⊆ K be a subclass. The
following are equivalent:

(a) K0 is finitely axiomatizable.

(b) K0 is axiomatizable by a single sentence. (K0 = Mod(σ))

(c) K0 and its complement K \ K0 are both axiomatizable.

[(a) ⇔ (b)] K0 is axiomatizable by {σ1, . . . , σn} iff it is axiomatizable by
{σ} for σ := σ1 ∧ σ2 ∧ · · · ∧ σn.
[(b) ⇒ (c)] If K0 = Mod(σ), then K \ K0 = Mod(¬σ).
[(c) ⇒ (a)] If K0 = Mod(Σ) and K \ K0 = Mod(Γ), then
Mod(Σ ∪ Γ) = K0 ∩ (K \ K0) = ∅, so Σ ∪ Γ is unsatisfiable. By
Compactness, there are finite subsets Σ0 = {σ1, . . . , σm} ⊆ Σ and
Γ0 = {γ1, . . . , γn} ⊆ Γ such that Σ0 ∪ Γ0 is unsatisfiable. Mod(Σ0) contains
K0 and is disjoint from Mod(Γ0) (which contains K \ K0), so
Mod(Σ0) = K0. 2
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