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Nature decides truth

The relation |= defines a Galois connection between L-structures and
L-sentences.

We write ¥ |= o to indicate that o lies in the Galois closure of 3.
(ie. o € BHh).

How can we characterize the Galois closure of 3 “internally”? (meaning: how
can you determine whether o € ¥+ without referring to structures?)
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Humans decide provability

We create a machine called “proof”, where ¢ is provable from > (X F o)
iff o is a semantic consequence of ¥ (X = o).

If our only goal is to characterize Galois closure internally, then we only
demand that our proof calculus be

@ Sound (X F oimplies ¥ o), and
e Complete (X = o implies ¥ F o).
But, since we are humans, we shall also demand that

@ proofs should be recognizable as proofs.

Definition. > - ¢ means there is a finite sequence of formulas
a1,Q2,...,0p =0

where each «; is an axiom, a member of X, or is derivable from earlier terms
in the sequence using a rule of inference.
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What is needed?

We should choose axioms so that they are recognizable instances of = c.

We should choose rules of inference, typically written % so that they
are recognizable instances of {aq,...,an} FE 5.

“Should” means: if we do this, then soundness will hold. We take:
Axioms.

@ All tautologies.

© = is an equivalence relation on terms.

© Can substitute equals for equals without changing meaning.

Q Vzi(a— B)) = (Voo — Va;0)

@ (o — Vax;a) if ; does not appear in formula a.

Q@ (Fz;(x; = t) if z; does not occur in term ¢.

Rules.

o (Modus Ponens) a,a6—>[3

e (Generalization) ﬁ
i
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where some «; has the structure P — () for some P and () and some o has
the structure () — R for some () and R. It might be tempting to select
ak+1 = P — R and ‘reason’ that P — R should be a consequence of

{P = Q,Q — R}. But % is not one of our inference rules. Instead,

one should argue as follows. Continue

oty s (P=Q),...,(Q = R),...,au
with

ap, (P = Q) = (@ = R) = (P = R))),((Q = R) = (P — R)),(P = R).
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@ Show that a consistent theory ' can be enlarged to a “Henkin theory”.
@ Show that a Henkin theory has a model.
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Df. A theory I' is a Henkin theory if it is
@ consistent,
© complete, and
© has witnesses.

Meanings:

@ A theory is consistent if you can’t prove falsity from it:
ry L.

© A consistent theory I' is complete if it decides every sentence:
For every o, either o € " or (—o) € I

© A theory I' has witnesses if whenever ¢(z) is a formula with at most
one free variable, then ((3x)¢(x) — ¢(c)) € T for some constant c.

Henkin’s key insight is that if A is a structure, then the theory of its
“expansion by constants”, I' = Th(A 4), is a Henkin theory. Conversely, every
Henkin theory arises in this way. Moreover, Th(A 4) ‘explains’ clearly how to
construct its canonical model, A 4.
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[Idea of proof: if I' t/ o, then ' U {—c} I/ L, so ' U {—c} is a consistent
enlargement of I'. Keep doing this until you arrive at a complete theory.]

Henkin’s Theorem. Every consistent theory can be enlarged to a consistent
theory with witnesses, provided we allow ourselves to enlarge the language to
include more constant symbols.

[Idea of proof: suppose I' U {(3z)p(x) — ¢(c)} F L where ¢ ¢ L. Then
' =((3z)p(x) = ¢(c)), or ' (3x)p(x) A =¢(c). Need quantifier axioms
and rules which permit this deduction:

(B)p () A =p(e), (Ve)(Fr)p(x) A —p(2)), Br)e(z) A =(3r)p(r)), L.

Thus I' = L. Now repeat the idea of Lindenbaum’s Theorem with ¢ equal to

~(Bz)p(z) = ¢()) ]
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Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If ¢ € L, then define ¢ = ¢ € C.

If R(x1,...,x,) is a predicate symbol, declare that R®(c1, ..., ¢,) is true if
R(ci,...,cn) € H.
If F(x1,...,x,) is a function symbol, declare that FC(cy,. .., c,) = d is true

if (F(c1,...,¢n) =d) € H.
Define an equivalence relation # on C' by ¢ = d (mod ) if (c = d) € H.

It will be the case that C/6 = H. In fact, H = Th(C/#). C/0 is called the
Henkin model of H.
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Compactness Theorem. If Y is a set of sentences and each finite subset of >
has a model, then > has a model. (If X is finitely satisfiable, then it is
satisfiable.)

[Proof of the contrapositive: Assume that > has no model. Then ¥ = L, so
YF 1L Ifaq,...,a L isa X-proof of L, then let 39 C X be the set of
sentences from 3 that are used in the proof. The given proof is a >g-proof of
1. This shows that the finite subset > C > has no model.]

The Completeness Theorem 11/15



Applications of Compactness

The Completeness Theorem 12/15



Applications of Compactness

Application 1.

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible)

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if 7" is
an L-theory with arbitrarily large finite models, then 7" has an infinite model.

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if 7" is
an L-theory with arbitrarily large finite models, then 7" has an infinite model.

Let L’ be the expansion of L to include an infinite set C' = {cg, c1, ...} of
‘new’ constant symbols.

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if 7" is
an L-theory with arbitrarily large finite models, then 7" has an infinite model.

Let L’ be the expansion of L to include an infinite set C' = {cg, c1, ...} of
‘new’ constant symbols. Let 7" be the set of sentences T'U {c¢; # ¢; | i # j}.

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if 7" is
an L-theory with arbitrarily large finite models, then 7" has an infinite model.

Let L’ be the expansion of L to include an infinite set C' = {cg, c1, ...} of

‘new’ constant symbols. Let 7" be the set of sentences T'U {c¢; # ¢; | i # j}.
T" is finitely satisfiable, so it is satisfiable.

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if 7" is
an L-theory with arbitrarily large finite models, then 7" has an infinite model.

Let L’ be the expansion of L to include an infinite set C' = {cg, c1, ...} of
‘new’ constant symbols. Let 7" be the set of sentences T'U {c¢; # ¢; | i # j}.
T is finitely satisfiable, so it is satisfiable. Any model of 7" is an infinite
model of T'.

The Completeness Theorem 12/15



Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let’s argue that if 7" is
an L-theory with arbitrarily large finite models, then 7" has an infinite model.

Let L’ be the expansion of L to include an infinite set C' = {cg, c1, ...} of
‘new’ constant symbols. Let 7" be the set of sentences T'U {c¢; # ¢; | i # j}.
T is finitely satisfiable, so it is satisfiable. Any model of 7" is an infinite
model of 7. O

The Completeness Theorem 12/15



Applications of Compactness

The Completeness Theorem 13/15



Applications of Compactness

Application 2.

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models)

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models) Let’s argue that if 7" is an L-theory and 7" has
an infinite model, then 7" has a model of size x for every k > |L|.

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models) Let’s argue that if 7" is an L-theory and 7" has
an infinite model, then 7" has a model of size x for every k > |L|.

Let L’ be the expansion of L to include an infinite set C' = {c, | o < k} of
new constant symbols.

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models) Let’s argue that if 7" is an L-theory and 7" has
an infinite model, then 7" has a model of size x for every k > |L|.

Let L’ be the expansion of L to include an infinite set C' = {c, | o < k} of
new constant symbols. Let 7" be the set of sentences
TU{ci#¢j|0<i<j<k}

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models) Let’s argue that if 7" is an L-theory and 7" has
an infinite model, then 7" has a model of size x for every k > |L|.

Let L’ be the expansion of L to include an infinite set C' = {c, | o < k} of

new constant symbols. Let 7" be the set of sentences
TU{c;i #¢; | 0<i<j<rk} T is finitely satisfiable, so it is satisfiable.

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models) Let’s argue that if 7" is an L-theory and 7" has
an infinite model, then 7" has a model of size x for every k > |L|.

Let L’ be the expansion of L to include an infinite set C' = {c, | o < k} of
new constant symbols. Let 7" be the set of sentences

TU{c;i #¢; | 0<i<j<rk} T is finitely satisfiable, so it is satisfiable.
Any model of T is a model of T" of size at least k.

The Completeness Theorem 13/15



Applications of Compactness

Application 2. (Large models) Let’s argue that if 7" is an L-theory and 7" has
an infinite model, then 7" has a model of size x for every k > |L|.

Let L’ be the expansion of L to include an infinite set C' = {c, | o < k} of
new constant symbols. Let 7" be the set of sentences

TU{c;i #¢; | 0<i<j<rk} T is finitely satisfiable, so it is satisfiable.
Any model of T” is a model of T" of size at least x. O

The Completeness Theorem 13/15



Applications of Compactness

The Completeness Theorem 14/15



Applications of Compactness

Application 3.

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R)

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal.

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

Let L' be the expansion of L to include a single new constant symbol ¢. Let
T be the set of sentences T U{0 <e < 1/n|n=1,2,3,...}.

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

Let L' be the expansion of L to include a single new constant symbol ¢. Let

T be the set of sentences T U {0 < e < 1/n|n=1,2,3,...}. T" is finitely
satisfiable, so it is satisfiable.

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

Let L' be the expansion of L to include a single new constant symbol ¢. Let

T be the set of sentences T U {0 < e < 1/n|n=1,2,3,...}. T" is finitely
satisfiable, so it is satisfiable. Any model of 7" is a model of T

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

Let L' be the expansion of L to include a single new constant symbol ¢. Let
T be the set of sentences T U {0 < e < 1/n|n=1,2,3,...}. T" is finitely
satisfiable, so it is satisfiable. Any model of 7" is a model of T" (hence is a
field elementarily equivalent to R)

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

Let L' be the expansion of L to include a single new constant symbol ¢. Let
T be the set of sentences T U {0 < e < 1/n|n=1,2,3,...}. T" is finitely
satisfiable, so it is satisfiable. Any model of 7" is a model of T" (hence is a
field elementarily equivalent to IR) which has a positive infinitesimal.

The Completeness Theorem 14/15



Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field
R) Let’s argue that if 7" = Th(R), then 7" has a model with a positive
infinitesimal. That is, 7" has a model R’ that is elementarily equivalent to R
which has an element € such that 0 < ¢ < 1/n holds for every positive integer
n.

Let L' be the expansion of L to include a single new constant symbol ¢. Let
T be the set of sentences T U {0 < e < 1/n|n=1,2,3,...}. T" is finitely
satisfiable, so it is satisfiable. Any model of 7" is a model of T" (hence is a
field elementarily equivalent to R) which has a positive infinitesimal. O

The Completeness Theorem 14/15



Applications of Compactness

The Completeness Theorem 15/15



Applications of Compactness

Application 4.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let KC be the class of all L-structures.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.
(b) KCp is axiomatizable by a single sentence.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.
(b) KCp is axiomatizable by a single sentence.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))
(c) Ko and its complement K \ Ky are both axiomatizable.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))
(c) Ko and its complement K \ Ky are both axiomatizable.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The

following are equivalent:
(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))
(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)]

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,
[(b) = (o]

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.
[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by

{o}foro:=01 ANoa A+ Aoy,
[(b) = (¢)] If Ko = Mod(c), then K\ Ky = Mod(—0).

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,

[(b) = (¢)] If Ko = Mod(c), then K\ Ky = Mod(—0).

[(¢) = (a)]

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.

(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,

[(b) = (¢)] If Ko = Mod(c), then K\ Ky = Mod(—0).

[(¢) = (a)]If Koy = Mod(X) and K \ Ky = Mod(T"), then

Mod(XUT) = Ko N (K \ Ko) =0, so X UT is unsatisfiable.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.

(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,

[(b) = (¢)] If Ko = Mod(c), then K\ Ky = Mod(—0).

[(¢) = (a)]If Koy = Mod(X) and K \ Ky = Mod(T"), then

Mod(2UT) = Ko N (K \ Ko) = 0, so ¥ UT is unsatisfiable. By
Compactness, there are finite subsets X9 = {o1,...,0,} C ¥ and
To={m,...,7} C I such that ¥y U Ty is unsatisfiable.

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,

[(b) = (¢)] If Ko = Mod(c), then K\ Ky = Mod(—0).

[(¢) = (a)]If Koy = Mod(X) and K \ Ky = Mod(T"), then

Mod(2UT) = Ko N (K \ Ko) = 0, so ¥ UT is unsatisfiable. By
Compactness, there are finite subsets X9 = {o1,...,0,} C ¥ and
To={v,...,v} C I such that ¥y U T is unsatisfiable. Mod(3() contains
Ko and is disjoint from Mod(I'g) (which contains K \ Ky), so

Mod(zo) = ,C().

The Completeness Theorem 15/15



Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let /C be the class of all L-structures. Let Iy C K be a subclass. The
following are equivalent:

(a) Ky is finitely axiomatizable.
(b) Ky is axiomatizable by a single sentence. (g = Mod(0))

(c) Ko and its complement K \ Ky are both axiomatizable.

[(a) & (b)] Ko is axiomatizable by {01, ..., 0, } iff it is axiomatizable by
{o}foro:=01 ANoa A+ Aoy,

[(b) = (¢)] If Ko = Mod(c), then K\ Ky = Mod(—0).

[(¢) = (a)]If Koy = Mod(X) and K \ Ky = Mod(T"), then

Mod(2UT) = Ko N (K \ Ko) = 0, so ¥ UT is unsatisfiable. By
Compactness, there are finite subsets X9 = {o1,...,0,} C ¥ and
To={v,...,v} C I such that ¥y U T is unsatisfiable. Mod(3() contains
Ko and is disjoint from Mod(I'g) (which contains K \ Ky), so

MOd(Eo) =K. O

The Completeness Theorem 15/15



