The Completeness Theorem

$$
\Sigma \models \sigma \text { iff } \Sigma \vdash \sigma
$$

Nature decides truth

Nature decides truth

The relation \models defines a Galois connection between L-structures and L-sentences.

Nature decides truth

The relation \models defines a Galois connection between L-structures and L-sentences.
We write $\Sigma \mid=\sigma$ to indicate that σ lies in the Galois closure of Σ.

Nature decides truth

The relation \models defines a Galois connection between L-structures and L-sentences.

We write $\Sigma \mid=\sigma$ to indicate that σ lies in the Galois closure of Σ. (i.e. $\sigma \in \Sigma^{\perp \perp}$).

Nature decides truth

The relation \models defines a Galois connection between L-structures and L-sentences.

We write $\Sigma \mid=\sigma$ to indicate that σ lies in the Galois closure of Σ. (i.e. $\sigma \in \Sigma^{\perp \perp}$).

How can we characterize the Galois closure of Σ "internally"?

Nature decides truth

The relation \models defines a Galois connection between L-structures and L-sentences.

We write $\Sigma \mid=\sigma$ to indicate that σ lies in the Galois closure of Σ. (i.e. $\sigma \in \Sigma^{\perp \perp}$).

How can we characterize the Galois closure of Σ "internally"? (meaning: how can you determine whether $\sigma \in \Sigma^{\perp \perp}$ without referring to structures?)

Humans decide provability

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \mid=\sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \mid=\sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \mid=\sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition.

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}=\sigma
$$

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}=\sigma
$$

where each α_{i} is an axiom,

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}=\sigma
$$

where each α_{i} is an axiom, a member of Σ,

Humans decide provability

We create a machine called "proof", where σ is provable from $\Sigma \quad(\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad(\Sigma \models \sigma)$.
If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $\quad(\Sigma \vdash \sigma$ implies $\Sigma \models \sigma)$, and
- Complete $\quad(\Sigma \models \sigma$ implies $\Sigma \vdash \sigma)$.

But, since we are humans, we shall also demand that

- proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}=\sigma
$$

where each α_{i} is an axiom, a member of Σ, or is derivable from earlier terms in the sequence using a rule of inference.

What is needed?

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means:

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take: Axioms.
(1) All tautologies.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \neq \beta$.
"Should" means: if we do this, then soundness will hold. We take:
Axioms.
(1) All tautologies.
(2) $=$ is an equivalence relation on terms.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take: Axioms.
(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

Axioms.

(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.
(9) $\left(\forall x_{i}(\alpha \rightarrow \beta)\right) \rightarrow\left(\forall x_{i} \alpha \rightarrow \forall x_{i} \beta\right)$

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

Axioms.

(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.
(9) $\left(\forall x_{i}(\alpha \rightarrow \beta)\right) \rightarrow\left(\forall x_{i} \alpha \rightarrow \forall x_{i} \beta\right)$
(6) $\left(\alpha \rightarrow \forall x_{i} \alpha\right)$ if x_{i} does not appear in formula α.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

Axioms.

(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.
(9) $\left(\forall x_{i}(\alpha \rightarrow \beta)\right) \rightarrow\left(\forall x_{i} \alpha \rightarrow \forall x_{i} \beta\right)$
(3) $\left(\alpha \rightarrow \forall x_{i} \alpha\right)$ if x_{i} does not appear in formula α.
(c) $\left(\exists x_{i}\left(x_{i}=t\right)\right.$ if x_{i} does not occur in term t.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

Axioms.

(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.
(9) $\left(\forall x_{i}(\alpha \rightarrow \beta)\right) \rightarrow\left(\forall x_{i} \alpha \rightarrow \forall x_{i} \beta\right)$
(3) $\left(\alpha \rightarrow \forall x_{i} \alpha\right)$ if x_{i} does not appear in formula α.
(c) $\left(\exists x_{i}\left(x_{i}=t\right)\right.$ if x_{i} does not occur in term t.

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

Axioms.

(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.
(9) $\left(\forall x_{i}(\alpha \rightarrow \beta)\right) \rightarrow\left(\forall x_{i} \alpha \rightarrow \forall x_{i} \beta\right)$
(6) $\left(\alpha \rightarrow \forall x_{i} \alpha\right)$ if x_{i} does not appear in formula α.
(c) $\left(\exists x_{i}\left(x_{i}=t\right)\right.$ if x_{i} does not occur in term t.

Rules.
(1) (Modus Ponens) $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$

What is needed?

We should choose axioms so that they are recognizable instances of $\models \alpha$.
We should choose rules of inference, typically written $\frac{\alpha_{1}, \ldots, \alpha_{m}}{\beta}$, so that they are recognizable instances of $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \models \beta$.
"Should" means: if we do this, then soundness will hold. We take:

Axioms.

(1) All tautologies.
(2) $=$ is an equivalence relation on terms.
(3) Can substitute equals for equals without changing meaning.
(9) $\left(\forall x_{i}(\alpha \rightarrow \beta)\right) \rightarrow\left(\forall x_{i} \alpha \rightarrow \forall x_{i} \beta\right)$
(6) $\left(\alpha \rightarrow \forall x_{i} \alpha\right)$ if x_{i} does not appear in formula α.
(c) $\left(\exists x_{i}\left(x_{i}=t\right)\right.$ if x_{i} does not occur in term t.

Rules.
(1) (Modus Ponens) $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$
(2) (Generalization) $\frac{\varphi}{\left(\forall x_{i}\right) \varphi}$

Example

Example

Suppose we have a partial proof

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where some α_{i} has the structure $P \rightarrow Q$ for some P and Q

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where some α_{i} has the structure $P \rightarrow Q$ for some P and Q and some α_{j} has the structure $Q \rightarrow R$ for some Q and R. It might be tempting to select $\alpha_{k+1}=P \rightarrow R$

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where some α_{i} has the structure $P \rightarrow Q$ for some P and Q and some α_{j} has the structure $Q \rightarrow R$ for some Q and R. It might be tempting to select $\alpha_{k+1}=P \rightarrow R$ and 'reason' that $P \rightarrow R$ should be a consequence of $\{P \rightarrow Q, Q \rightarrow R\}$.

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where some α_{i} has the structure $P \rightarrow Q$ for some P and Q and some α_{j} has the structure $Q \rightarrow R$ for some Q and R. It might be tempting to select $\alpha_{k+1}=P \rightarrow R$ and 'reason' that $P \rightarrow R$ should be a consequence of $\{P \rightarrow Q, Q \rightarrow R\}$. But $\frac{P \rightarrow Q, Q \rightarrow R}{P \rightarrow R}$ is not one of our inference rules.

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where some α_{i} has the structure $P \rightarrow Q$ for some P and Q and some α_{j} has the structure $Q \rightarrow R$ for some Q and R. It might be tempting to select $\alpha_{k+1}=P \rightarrow R$ and 'reason' that $P \rightarrow R$ should be a consequence of $\{P \rightarrow Q, Q \rightarrow R\}$. But $\frac{P \rightarrow Q, Q \rightarrow R}{P \rightarrow R}$ is not one of our inference rules. Instead, one should argue as follows. Continue

Example

Suppose we have a partial proof

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where some α_{i} has the structure $P \rightarrow Q$ for some P and Q and some α_{j} has the structure $Q \rightarrow R$ for some Q and R. It might be tempting to select $\alpha_{k+1}=P \rightarrow R$ and 'reason' that $P \rightarrow R$ should be a consequence of $\{P \rightarrow Q, Q \rightarrow R\}$. But $\frac{P \rightarrow Q, Q \rightarrow R}{P \rightarrow R}$ is not one of our inference rules. Instead, one should argue as follows. Continue

$$
\alpha_{1}, \ldots,(P \rightarrow Q), \ldots,(Q \rightarrow R), \ldots, \alpha_{k}
$$

with

$$
\alpha_{k},((P \rightarrow Q) \rightarrow((Q \rightarrow R) \rightarrow(P \rightarrow R))),((Q \rightarrow R) \rightarrow(P \rightarrow R)),(P \rightarrow R)
$$

Stage 1: the Deduction Theorem

Stage 1: the Deduction Theorem

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup\{\neg \sigma\} \models \perp$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \models \perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \mid \neq \perp)$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$. It is also easy.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.
It is also easy.
[Idea: Replace every α_{i} in a $(\Sigma \cup\{\alpha\})$-proof of β with $\alpha \rightarrow \alpha_{i}$ to obtain a Σ-proof of $(\alpha \rightarrow \beta)$.]

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.
It is also easy.
[Idea: Replace every α_{i} in a $(\Sigma \cup\{\alpha\})$-proof of β with $\alpha \rightarrow \alpha_{i}$ to obtain a Σ-proof of $(\alpha \rightarrow \beta)$.]
The second part is called:

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.
It is also easy.
[Idea: Replace every α_{i} in a $(\Sigma \cup\{\alpha\})$-proof of β with $\alpha \rightarrow \alpha_{i}$ to obtain a Σ-proof of $(\alpha \rightarrow \beta)$.]
The second part is called:
The Deduction Theorem.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.
It is also easy.
[Idea: Replace every α_{i} in a $(\Sigma \cup\{\alpha\})$-proof of β with $\alpha \rightarrow \alpha_{i}$ to obtain a Σ-proof of $(\alpha \rightarrow \beta)$.]
The second part is called:
The Deduction Theorem. If $\Sigma \cup\{\alpha\} \vdash \beta$, then $\Sigma \vdash(\alpha \rightarrow \beta)$.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.
It is also easy.
[Idea: Replace every α_{i} in a $(\Sigma \cup\{\alpha\})$-proof of β with $\alpha \rightarrow \alpha_{i}$ to obtain a Σ-proof of $(\alpha \rightarrow \beta)$.]
The second part is called:
The Deduction Theorem. If $\Sigma \cup\{\alpha\} \vdash \beta$, then $\Sigma \vdash(\alpha \rightarrow \beta)$.
Corollary.

Stage 1: the Deduction Theorem

Observe that $\Sigma \mid=\sigma$ iff $\Sigma \cup\{\neg \sigma\} \mid=\perp$. (Note: $\forall \mathbb{A}(\mathbb{A} \not \vDash \perp)$. I.e., \perp is not satisfiable.)
Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup\{\neg \sigma\} \vdash \perp$.
More generally, $\Sigma \cup\{\alpha\} \models \beta$ iff $\Sigma \models(\alpha \rightarrow \beta)$.
So we want $\Sigma \cup\{\alpha\} \vdash \beta$ iff $\Sigma \vdash(\alpha \rightarrow \beta)$.
"If" is direct and easy. (Show!)
"Only if" is proved by induction on the length of a proof of $\Sigma \cup\{\alpha\} \vdash \beta$.
It is also easy.
[Idea: Replace every α_{i} in a $(\Sigma \cup\{\alpha\})$-proof of β with $\alpha \rightarrow \alpha_{i}$ to obtain a Σ-proof of $(\alpha \rightarrow \beta)$.]
The second part is called:
The Deduction Theorem. If $\Sigma \cup\{\alpha\} \vdash \beta$, then $\Sigma \vdash(\alpha \rightarrow \beta)$.
Corollary. $\Sigma \cup\{\alpha\} \vdash \perp$ iff $\Sigma \vdash \neg \alpha$.

Application

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.
Contrapositively, if Γ is consistent, then it is satisfiable

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.
Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model).

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.
Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.
Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Strategy to achieve our goal:
(1) Show that a consistent theory Γ can be enlarged to a "Henkin theory".

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.
Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Strategy to achieve our goal:
(1) Show that a consistent theory Γ can be enlarged to a "Henkin theory".
(2) Show that a Henkin theory has a model.

Application

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.
Equivalently, if $\Gamma:=\Sigma \cup\{\neg \sigma\}$ is not satisfiable $(\Gamma \models \perp)$, then it is not consistent $(\Gamma \vdash \perp)$.
Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Strategy to achieve our goal:
(1) Show that a consistent theory Γ can be enlarged to a "Henkin theory".
(2) Show that a Henkin theory has a model.
(3) Show that a model of an enlargement of Γ is also a model of Γ.

Henkin theory

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,

C complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it:

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,

C complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it:

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence:

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence:

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence:

For every σ, either $\sigma \in \Gamma$ or $(\neg \sigma) \in \Gamma$.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence:

For every σ, either $\sigma \in \Gamma$ or $(\neg \sigma) \in \Gamma$.
(3) A theory Γ has witnesses if whenever $\varphi(x)$ is a formula with at most one free variable, then $((\exists x) \varphi(x) \rightarrow \varphi(c)) \in \Gamma$ for some constant c.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence:

For every σ, either $\sigma \in \Gamma$ or $(\neg \sigma) \in \Gamma$.
(3) A theory Γ has witnesses if whenever $\varphi(x)$ is a formula with at most one free variable, then $((\exists x) \varphi(x) \rightarrow \varphi(c)) \in \Gamma$ for some constant c.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence: For every σ, either $\sigma \in \Gamma$ or $(\neg \sigma) \in \Gamma$.
(3) A theory Γ has witnesses if whenever $\varphi(x)$ is a formula with at most one free variable, then $((\exists x) \varphi(x) \rightarrow \varphi(c)) \in \Gamma$ for some constant c.

Henkin's key insight is that if \mathbb{A} is a structure, then the theory of its "expansion by constants", $\Gamma=\operatorname{Th}\left(\mathbb{A}_{A}\right)$, is a Henkin theory.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence: For every σ, either $\sigma \in \Gamma$ or $(\neg \sigma) \in \Gamma$.
(3) A theory Γ has witnesses if whenever $\varphi(x)$ is a formula with at most one free variable, then $((\exists x) \varphi(x) \rightarrow \varphi(c)) \in \Gamma$ for some constant c.

Henkin's key insight is that if \mathbb{A} is a structure, then the theory of its "expansion by constants", $\Gamma=\operatorname{Th}\left(\mathbb{A}_{A}\right)$, is a Henkin theory. Conversely, every Henkin theory arises in this way.

Henkin theory

Df. A theory Γ is a Henkin theory if it is
(1) consistent,
(2) complete, and
(3) has witnesses.

Meanings:
(1) A theory is consistent if you can't prove falsity from it: $\Gamma \nvdash \perp$.
(2) A consistent theory Γ is complete if it decides every sentence: For every σ, either $\sigma \in \Gamma$ or $(\neg \sigma) \in \Gamma$.
(3) A theory Γ has witnesses if whenever $\varphi(x)$ is a formula with at most one free variable, then $((\exists x) \varphi(x) \rightarrow \varphi(c)) \in \Gamma$ for some constant c.

Henkin's key insight is that if \mathbb{A} is a structure, then the theory of its "expansion by constants", $\Gamma=\operatorname{Th}\left(\mathbb{A}_{A}\right)$, is a Henkin theory. Conversely, every Henkin theory arises in this way. Moreover, $\operatorname{Th}\left(\mathbb{A}_{A}\right)$ 'explains' clearly how to construct its canonical model, \mathbb{A}_{A}.

The enlargement steps

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof:

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$,

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ.

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof:

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$.

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x) \varphi(x) \rightarrow \varphi(c))$,

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x) \varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash(\exists x) \varphi(x) \wedge \neg \varphi(c)$.

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x) \varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash(\exists x) \varphi(x) \wedge \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x) \varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash(\exists x) \varphi(x) \wedge \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

$$
(\exists x) \varphi(x) \wedge \neg \varphi(c),(\forall x)((\exists x) \varphi(x) \wedge \neg \varphi(x)),(\exists x) \varphi(x) \wedge \neg(\exists x) \varphi(x)), \perp
$$

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]
Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x) \varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash(\exists x) \varphi(x) \wedge \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

$$
(\exists x) \varphi(x) \wedge \neg \varphi(c),(\forall x)((\exists x) \varphi(x) \wedge \neg \varphi(x)),(\exists x) \varphi(x) \wedge \neg(\exists x) \varphi(x)), \perp .
$$

Thus $\Gamma \vdash \perp$.

The enlargement steps

Lindenbaum's Theorem. Every consistent L-theory can be enlarged to a complete L-theory.
[Idea of proof: if $\Gamma \nvdash \sigma$, then $\Gamma \cup\{\neg \sigma\} \nvdash \perp$, so $\Gamma \cup\{\neg \sigma\}$ is a consistent enlargement of Γ. Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.
[Idea of proof: suppose $\Gamma \cup\{(\exists x) \varphi(x) \rightarrow \varphi(c)\} \vdash \perp$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x) \varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash(\exists x) \varphi(x) \wedge \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

$$
(\exists x) \varphi(x) \wedge \neg \varphi(c),(\forall x)((\exists x) \varphi(x) \wedge \neg \varphi(x)),(\exists x) \varphi(x) \wedge \neg(\exists x) \varphi(x)), \perp .
$$

Thus $\Gamma \vdash \perp$. Now repeat the idea of Lindenbaum's Theorem with σ equal to $\neg((\exists x) \varphi(x) \rightarrow \varphi(c))$.]

Finally: Henkin theories have a canonical model.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.
If $R\left(x_{1}, \ldots, x_{n}\right)$ is a predicate symbol, declare that $R^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)$ is true if $R\left(c_{1}, \ldots, c_{n}\right) \in H$.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.
If $R\left(x_{1}, \ldots, x_{n}\right)$ is a predicate symbol, declare that $R^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)$ is true if $R\left(c_{1}, \ldots, c_{n}\right) \in H$.
If $F\left(x_{1}, \ldots, x_{n}\right)$ is a function symbol, declare that $F^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)=d$ is true if $\left(F\left(c_{1}, \ldots, c_{n}\right)=d\right) \in H$.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.
If $R\left(x_{1}, \ldots, x_{n}\right)$ is a predicate symbol, declare that $R^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)$ is true if $R\left(c_{1}, \ldots, c_{n}\right) \in H$.
If $F\left(x_{1}, \ldots, x_{n}\right)$ is a function symbol, declare that $F^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)=d$ is true if $\left(F\left(c_{1}, \ldots, c_{n}\right)=d\right) \in H$.
Define an equivalence relation θ on C by $c \equiv d(\bmod \theta)$ if $(c=d) \in H$.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.
If $R\left(x_{1}, \ldots, x_{n}\right)$ is a predicate symbol, declare that $R^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)$ is true if $R\left(c_{1}, \ldots, c_{n}\right) \in H$.
If $F\left(x_{1}, \ldots, x_{n}\right)$ is a function symbol, declare that $F^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)=d$ is true if $\left(F\left(c_{1}, \ldots, c_{n}\right)=d\right) \in H$.
Define an equivalence relation θ on C by $c \equiv d(\bmod \theta)$ if $(c=d) \in H$.
It will be the case that $\mathbb{C} / \theta \models H$.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.
If $R\left(x_{1}, \ldots, x_{n}\right)$ is a predicate symbol, declare that $R^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)$ is true if $R\left(c_{1}, \ldots, c_{n}\right) \in H$.
If $F\left(x_{1}, \ldots, x_{n}\right)$ is a function symbol, declare that $F^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)=d$ is true if $\left(F\left(c_{1}, \ldots, c_{n}\right)=d\right) \in H$.
Define an equivalence relation θ on C by $c \equiv d(\bmod \theta)$ if $(c=d) \in H$.
It will be the case that $\mathbb{C} / \theta \models H$. In fact, $H=\operatorname{Th}(\mathbb{C} / \theta)$.

Finally: Henkin theories have a canonical model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If $c \in L$, then define $c^{\mathbb{C}}=c \in C$.
If $R\left(x_{1}, \ldots, x_{n}\right)$ is a predicate symbol, declare that $R^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)$ is true if $R\left(c_{1}, \ldots, c_{n}\right) \in H$.
If $F\left(x_{1}, \ldots, x_{n}\right)$ is a function symbol, declare that $F^{\mathbb{C}}\left(c_{1}, \ldots, c_{n}\right)=d$ is true if $\left(F\left(c_{1}, \ldots, c_{n}\right)=d\right) \in H$.
Define an equivalence relation θ on C by $c \equiv d(\bmod \theta)$ if $(c=d) \in H$. It will be the case that $\mathbb{C} / \theta \models H$. In fact, $H=\operatorname{Th}(\mathbb{C} / \theta)$. \mathbb{C} / θ is called the Henkin model of H.

Compactness

Compactness

Compactness Theorem.

Compactness

Compactness Theorem. If Σ is a set of sentences

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model,

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model.

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive:

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive: Assume that Σ has no model.

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \perp$,

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \vDash \perp$, so $\Sigma \vdash \perp$.

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \perp$, so $\Sigma \vdash \perp$. If $\alpha_{1}, \ldots, \alpha_{k}, \perp$ is a Σ-proof of \perp,

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \perp$, so $\Sigma \vdash \perp$. If $\alpha_{1}, \ldots, \alpha_{k}, \perp$ is a Σ-proof of \perp, then let $\Sigma_{0} \subseteq \Sigma$ be the set of sentences from Σ that are used in the proof.

Compactness

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)
[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \perp$, so $\Sigma \vdash \perp$. If $\alpha_{1}, \ldots, \alpha_{k}, \perp$ is a Σ-proof of \perp, then let $\Sigma_{0} \subseteq \Sigma$ be the set of sentences from Σ that are used in the proof. The given proof is a Σ_{0}-proof of \perp. This shows that the finite subset $\Sigma_{0} \subseteq \Sigma$ has no model.]

Applications of Compactness

Applications of Compactness

Application 1.

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible)

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{0}, c_{1}, \ldots\right\}$ of 'new' constant symbols.

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{0}, c_{1}, \ldots\right\}$ of 'new' constant symbols. Let T ' be the set of sentences $T \cup\left\{c_{i} \neq c_{j} \mid i \neq j\right\}$.

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{0}, c_{1}, \ldots\right\}$ of 'new' constant symbols. Let T^{\prime} be the set of sentences $T \cup\left\{c_{i} \neq c_{j} \mid i \neq j\right\}$. T^{\prime} is finitely satisfiable, so it is satisfiable.

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{0}, c_{1}, \ldots\right\}$ of 'new' constant symbols. Let T^{\prime} be the set of sentences $T \cup\left\{c_{i} \neq c_{j} \mid i \neq j\right\}$. T^{\prime} is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is an infinite model of T.

Applications of Compactness

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{0}, c_{1}, \ldots\right\}$ of 'new' constant symbols. Let T^{\prime} be the set of sentences $T \cup\left\{c_{i} \neq c_{j} \mid i \neq j\right\}$. T^{\prime} is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is an infinite model of T.

Applications of Compactness

Applications of Compactness

Application 2.

Applications of Compactness

Application 2. (Large models)

Applications of Compactness

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \geq|L|$.

Applications of Compactness

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \geq|L|$.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ of new constant symbols.

Applications of Compactness

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \geq|L|$.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ of new constant symbols. Let T^{\prime} be the set of sentences
$T \cup\left\{c_{i} \neq c_{j} \mid 0<i<j<\kappa\right\}$.

Applications of Compactness

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \geq|L|$.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ of new constant symbols. Let T^{\prime} be the set of sentences
$T \cup\left\{c_{i} \neq c_{j} \mid 0<i<j<\kappa\right\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable.

Applications of Compactness

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \geq|L|$.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ of new constant symbols. Let T^{\prime} be the set of sentences
$T \cup\left\{c_{i} \neq c_{j} \mid 0<i<j<\kappa\right\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is a model of T of size at least κ.

Applications of Compactness

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \geq|L|$.

Let L^{\prime} be the expansion of L to include an infinite set $C=\left\{c_{\alpha} \mid \alpha<\kappa\right\}$ of new constant symbols. Let T^{\prime} be the set of sentences
$T \cup\left\{c_{i} \neq c_{j} \mid 0<i<j<\kappa\right\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is a model of T of size at least κ. \square

Applications of Compactness

Applications of Compactness

Application 3.

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R})

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal.

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Let L^{\prime} be the expansion of L to include a single new constant symbol ε. Let T^{\prime} be the set of sentences $T \cup\{0<\varepsilon<1 / n \mid n=1,2,3, \ldots\}$.

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Let L^{\prime} be the expansion of L to include a single new constant symbol ε. Let T^{\prime} be the set of sentences $T \cup\{0<\varepsilon<1 / n \mid n=1,2,3, \ldots\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable.

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Let L^{\prime} be the expansion of L to include a single new constant symbol ε. Let T^{\prime} be the set of sentences $T \cup\{0<\varepsilon<1 / n \mid n=1,2,3, \ldots\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is a model of T

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Let L^{\prime} be the expansion of L to include a single new constant symbol ε. Let T^{\prime} be the set of sentences $T \cup\{0<\varepsilon<1 / n \mid n=1,2,3, \ldots\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is a model of T (hence is a field elementarily equivalent to \mathbb{R})

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Let L^{\prime} be the expansion of L to include a single new constant symbol ε. Let T^{\prime} be the set of sentences $T \cup\{0<\varepsilon<1 / n \mid n=1,2,3, \ldots\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is a model of T (hence is a field elementarily equivalent to \mathbb{R}) which has a positive infinitesimal.

Applications of Compactness

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T=\operatorname{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}^{\prime} that is elementarily equivalent to \mathbb{R} which has an element ε such that $0<\varepsilon<1 / n$ holds for every positive integer n.

Let L^{\prime} be the expansion of L to include a single new constant symbol ε. Let T^{\prime} be the set of sentences $T \cup\{0<\varepsilon<1 / n \mid n=1,2,3, \ldots\} . T^{\prime}$ is finitely satisfiable, so it is satisfiable. Any model of T^{\prime} is a model of T (hence is a field elementarily equivalent to \mathbb{R}) which has a positive infinitesimal. \square

Applications of Compactness

Applications of Compactness

Application 4.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)]$

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\sigma)$, then $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\neg \sigma)$.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\sigma)$, then $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\neg \sigma)$.
$[(c) \Rightarrow(a)]$

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\sigma)$, then $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\neg \sigma)$.
$[(c) \Rightarrow(a)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\Sigma)$ and $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\Gamma)$, then
$\operatorname{Mod}(\Sigma \cup \Gamma)=\mathcal{K}_{0} \cap\left(\mathcal{K} \backslash \mathcal{K}_{0}\right)=\emptyset$, so $\Sigma \cup \Gamma$ is unsatisfiable.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\sigma)$, then $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\neg \sigma)$.
$[(c) \Rightarrow(a)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\Sigma)$ and $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\Gamma)$, then
$\operatorname{Mod}(\Sigma \cup \Gamma)=\mathcal{K}_{0} \cap\left(\mathcal{K} \backslash \mathcal{K}_{0}\right)=\emptyset$, so $\Sigma \cup \Gamma$ is unsatisfiable. By
Compactness, there are finite subsets $\Sigma_{0}=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\} \subseteq \Sigma$ and
$\Gamma_{0}=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subseteq \Gamma$ such that $\Sigma_{0} \cup \Gamma_{0}$ is unsatisfiable.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by
$\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\sigma)$, then $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\neg \sigma)$.
$[(c) \Rightarrow(a)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\Sigma)$ and $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\Gamma)$, then
$\operatorname{Mod}(\Sigma \cup \Gamma)=\mathcal{K}_{0} \cap\left(\mathcal{K} \backslash \mathcal{K}_{0}\right)=\emptyset$, so $\Sigma \cup \Gamma$ is unsatisfiable. By
Compactness, there are finite subsets $\Sigma_{0}=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\} \subseteq \Sigma$ and
$\Gamma_{0}=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subseteq \Gamma$ such that $\Sigma_{0} \cup \Gamma_{0}$ is unsatisfiable. $\operatorname{Mod}\left(\Sigma_{0}\right)$ contains
\mathcal{K}_{0} and is disjoint from $\operatorname{Mod}\left(\Gamma_{0}\right)$ (which contains $\mathcal{K} \backslash \mathcal{K}_{0}$), so
$\operatorname{Mod}\left(\Sigma_{0}\right)=\mathcal{K}_{0}$.

Applications of Compactness

Application 4. (Finitely axiomatizable classes)
Let \mathcal{K} be the class of all L-structures. Let $\mathcal{K}_{0} \subseteq \mathcal{K}$ be a subclass. The following are equivalent:
(a) \mathcal{K}_{0} is finitely axiomatizable.
(b) \mathcal{K}_{0} is axiomatizable by a single sentence. $\left(\mathcal{K}_{0}=\operatorname{Mod}(\sigma)\right)$
(c) \mathcal{K}_{0} and its complement $\mathcal{K} \backslash \mathcal{K}_{0}$ are both axiomatizable.
$[(a) \Leftrightarrow(b)] \mathcal{K}_{0}$ is axiomatizable by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ iff it is axiomatizable by
$\{\sigma\}$ for $\sigma:=\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}$.
$[(b) \Rightarrow(c)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\sigma)$, then $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\neg \sigma)$.
$[(c) \Rightarrow(a)]$ If $\mathcal{K}_{0}=\operatorname{Mod}(\Sigma)$ and $\mathcal{K} \backslash \mathcal{K}_{0}=\operatorname{Mod}(\Gamma)$, then
$\operatorname{Mod}(\Sigma \cup \Gamma)=\mathcal{K}_{0} \cap\left(\mathcal{K} \backslash \mathcal{K}_{0}\right)=\emptyset$, so $\Sigma \cup \Gamma$ is unsatisfiable. By
Compactness, there are finite subsets $\Sigma_{0}=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\} \subseteq \Sigma$ and
$\Gamma_{0}=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subseteq \Gamma$ such that $\Sigma_{0} \cup \Gamma_{0}$ is unsatisfiable. $\operatorname{Mod}\left(\Sigma_{0}\right)$ contains
\mathcal{K}_{0} and is disjoint from $\operatorname{Mod}\left(\Gamma_{0}\right)$ (which contains $\mathcal{K} \backslash \mathcal{K}_{0}$), so
$\operatorname{Mod}\left(\Sigma_{0}\right)=\mathcal{K}_{0} . \square$

