The Completeness Theorem

$$\Sigma \models \sigma \text{ iff } \Sigma \vdash \sigma$$

The relation \models defines a Galois connection between *L*-structures and *L*-sentences.

The relation \models defines a Galois connection between *L*-structures and *L*-sentences.

We write $\Sigma \models \sigma$ to indicate that σ lies in the Galois closure of Σ .

The relation \models defines a Galois connection between *L*-structures and *L*-sentences.

We write $\Sigma \models \sigma$ to indicate that σ lies in the Galois closure of Σ . (i.e. $\sigma \in \Sigma^{\perp \perp}$).

The relation \models defines a Galois connection between *L*-structures and *L*-sentences.

We write $\Sigma \models \sigma$ to indicate that σ lies in the Galois closure of Σ . (i.e. $\sigma \in \Sigma^{\perp \perp}$).

How can we characterize the Galois closure of Σ "internally"?

The relation \models defines a Galois connection between *L*-structures and *L*-sentences.

We write $\Sigma \models \sigma$ to indicate that σ lies in the Galois closure of Σ . (i.e. $\sigma \in \Sigma^{\perp \perp}$).

How can we characterize the Galois closure of Σ "internally"? (meaning: how can you determine whether $\sigma \in \Sigma^{\perp \perp}$ without referring to structures?)

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

We create a machine called "proof", where σ is provable from $\Sigma \quad (\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad (\Sigma \models \sigma)$.

We create a machine called "proof", where σ is provable from $\Sigma \quad (\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad (\Sigma \models \sigma)$.

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

Sound

We create a machine called "proof", where σ is provable from $\Sigma \quad (\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad (\Sigma \models \sigma)$.

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

Sound

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

• Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition.

We create a machine called "proof", where σ is provable from $\Sigma \quad (\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad (\Sigma \models \sigma)$.

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$\alpha_1, \alpha_2, \ldots, \alpha_n = \sigma$$

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$\alpha_1, \alpha_2, \ldots, \alpha_n = \sigma$$

where each α_i is an **axiom**,

We create a machine called "proof", where σ is provable from Σ ($\Sigma \vdash \sigma$) iff σ is a semantic consequence of Σ ($\Sigma \models \sigma$).

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$\alpha_1, \alpha_2, \ldots, \alpha_n = \sigma$$

where each α_i is an **axiom**, a member of Σ ,

We create a machine called "proof", where σ is provable from $\Sigma \quad (\Sigma \vdash \sigma)$ iff σ is a semantic consequence of $\Sigma \quad (\Sigma \models \sigma)$.

If our only goal is to characterize Galois closure internally, then we only demand that our proof calculus be

- Sound $(\Sigma \vdash \sigma \text{ implies } \Sigma \models \sigma)$, and
- Complete $(\Sigma \models \sigma \text{ implies } \Sigma \vdash \sigma).$

But, since we are humans, we shall also demand that

• proofs should be recognizable as proofs.

Definition. $\Sigma \vdash \sigma$ means there is a finite sequence of formulas

$$\alpha_1, \alpha_2, \ldots, \alpha_n = \sigma$$

where each α_i is an **axiom**, a member of Σ , or is derivable from earlier terms in the sequence using a **rule of inference**.

We should choose **axioms** so that they are recognizable instances of $\models \alpha$.

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$. "Should" means:

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold.

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

All tautologies.

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.
We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.

$$(\forall x_i(\alpha \to \beta)) \to (\forall x_i \alpha \to \forall x_i \beta)$$

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.

$$(\forall x_i(\alpha \to \beta)) \to (\forall x_i \alpha \to \forall x_i \beta)$$

 $(\alpha \to \forall x_i \alpha) \text{ if } x_i \text{ does not appear in formula } \alpha.$

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.

$$(\forall x_i(\alpha \to \beta)) \to (\forall x_i \alpha \to \forall x_i \beta)$$

- $(\alpha \to \forall x_i \alpha) \text{ if } x_i \text{ does not appear in formula } \alpha.$
- $(\exists x_i(x_i = t) \text{ if } x_i \text{ does not occur in term } t.$

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.

$$(\forall x_i(\alpha \to \beta)) \to (\forall x_i \alpha \to \forall x_i \beta)$$

- $(\alpha \to \forall x_i \alpha) \text{ if } x_i \text{ does not appear in formula } \alpha.$
- $(\exists x_i(x_i = t) \text{ if } x_i \text{ does not occur in term } t.$

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.

$$(\forall x_i(\alpha \to \beta)) \to (\forall x_i \alpha \to \forall x_i \beta)$$

- $(\alpha \to \forall x_i \alpha) \text{ if } x_i \text{ does not appear in formula } \alpha.$
- $(\exists x_i(x_i = t) \text{ if } x_i \text{ does not occur in term } t.$

Rules.

(Modus Ponens)
$$\frac{\alpha, \alpha \rightarrow \beta}{\beta}$$

We should choose **axioms** so that they are recognizable instances of $\models \alpha$. We should choose rules of inference, typically written $\frac{\alpha_1,...,\alpha_m}{\beta}$, so that they are recognizable instances of $\{\alpha_1,...,\alpha_m\} \models \beta$.

"Should" means: if we do this, then soundness will hold. We take:

Axioms.

- All tautologies.
- 2 =is an equivalence relation on terms.
- S Can substitute equals for equals without changing meaning.

$$(\forall x_i(\alpha \to \beta)) \to (\forall x_i \alpha \to \forall x_i \beta)$$

- $(\alpha \to \forall x_i \alpha) \text{ if } x_i \text{ does not appear in formula } \alpha.$
- $(\exists x_i(x_i = t) \text{ if } x_i \text{ does not occur in term } t.$

Rules.

(Modus Ponens) $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$

(Generalization) $\frac{\varphi}{(\forall x_i)\varphi}$

Suppose we have a partial proof

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

where some α_i has the structure $P \to Q$ for some P and Q

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

where some α_i has the structure $P \to Q$ for some P and Q and some α_j has the structure $Q \to R$ for some Q and R. It might be tempting to select $\alpha_{k+1} = P \to R$

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

where some α_i has the structure $P \to Q$ for some P and Q and some α_j has the structure $Q \to R$ for some Q and R. It might be tempting to select $\alpha_{k+1} = P \to R$ and 'reason' that $P \to R$ should be a consequence of $\{P \to Q, Q \to R\}$.

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

where some α_i has the structure $P \to Q$ for some P and Q and some α_j has the structure $Q \to R$ for some Q and R. It might be tempting to select $\alpha_{k+1} = P \to R$ and 'reason' that $P \to R$ should be a consequence of $\{P \to Q, Q \to R\}$. But $\frac{P \to Q, Q \to R}{P \to R}$ is not one of our inference rules.

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

where some α_i has the structure $P \to Q$ for some P and Q and some α_j has the structure $Q \to R$ for some Q and R. It might be tempting to select $\alpha_{k+1} = P \to R$ and 'reason' that $P \to R$ should be a consequence of $\{P \to Q, Q \to R\}$. But $\frac{P \to Q, Q \to R}{P \to R}$ is not one of our inference rules. Instead, one should argue as follows. Continue

Suppose we have a partial proof

 $\alpha_1, \alpha_2, \ldots, \alpha_k$

where some α_i has the structure $P \to Q$ for some P and Q and some α_j has the structure $Q \to R$ for some Q and R. It might be tempting to select $\alpha_{k+1} = P \to R$ and 'reason' that $P \to R$ should be a consequence of $\{P \to Q, Q \to R\}$. But $\frac{P \to Q, Q \to R}{P \to R}$ is not one of our inference rules. Instead, one should argue as follows. Continue

$$\alpha_1, \ldots, (P \to Q), \ldots, (Q \to R), \ldots, \alpha_k$$

with

$$\alpha_k, ((P \to Q) \to ((Q \to R) \to (P \to R))), ((Q \to R) \to (P \to R)), (P \to R).$$

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg\sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$).

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.

More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg \sigma\} \vdash \bot$.

More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.

So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.

More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.

So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.

"If" is direct and easy.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.

More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.

So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.

"If" is direct and easy. (Show!)

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.

More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.

So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.

"If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

[Idea: Replace every α_i in a $(\Sigma \cup \{\alpha\})$ -proof of β with $\alpha \to \alpha_i$ to obtain a Σ -proof of $(\alpha \to \beta)$.]

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

[Idea: Replace every α_i in a $(\Sigma \cup \{\alpha\})$ -proof of β with $\alpha \to \alpha_i$ to obtain a Σ -proof of $(\alpha \to \beta)$.]

The second part is called:

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

[Idea: Replace every α_i in a $(\Sigma \cup \{\alpha\})$ -proof of β with $\alpha \to \alpha_i$ to obtain a Σ -proof of $(\alpha \to \beta)$.]

The second part is called:

The Deduction Theorem.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

[Idea: Replace every α_i in a $(\Sigma \cup \{\alpha\})$ -proof of β with $\alpha \to \alpha_i$ to obtain a Σ -proof of $(\alpha \to \beta)$.]

The second part is called:

The Deduction Theorem. If $\Sigma \cup \{\alpha\} \vdash \beta$, then $\Sigma \vdash (\alpha \rightarrow \beta)$.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

[Idea: Replace every α_i in a $(\Sigma \cup \{\alpha\})$ -proof of β with $\alpha \to \alpha_i$ to obtain a Σ -proof of $(\alpha \to \beta)$.]

The second part is called:

The Deduction Theorem. If $\Sigma \cup \{\alpha\} \vdash \beta$, then $\Sigma \vdash (\alpha \rightarrow \beta)$. Corollary.

Observe that $\Sigma \models \sigma$ iff $\Sigma \cup \{\neg \sigma\} \models \bot$. (Note: $\forall \mathbb{A}(\mathbb{A} \not\models \bot)$). I.e., \bot is not satisfiable.)

- Therefore we want $\Sigma \vdash \sigma$ iff $\Sigma \cup \{\neg\sigma\} \vdash \bot$.
- More generally, $\Sigma \cup \{\alpha\} \models \beta$ iff $\Sigma \models (\alpha \rightarrow \beta)$.
- So we want $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \vdash (\alpha \rightarrow \beta)$.
- "If" is direct and easy. (Show!)

"Only if" is proved by induction on the length of a proof of $\Sigma \cup \{\alpha\} \vdash \beta$. It is also easy.

[Idea: Replace every α_i in a $(\Sigma \cup \{\alpha\})$ -proof of β with $\alpha \to \alpha_i$ to obtain a Σ -proof of $(\alpha \to \beta)$.]

The second part is called:

The Deduction Theorem. If $\Sigma \cup \{\alpha\} \vdash \beta$, then $\Sigma \vdash (\alpha \rightarrow \beta)$.

Corollary. $\Sigma \cup \{\alpha\} \vdash \bot \text{ iff } \Sigma \vdash \neg \alpha.$

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$. Equivalently, if $\Gamma := \Sigma \cup \{\neg \sigma\}$ is not **satisfiable** $(\Gamma \models \bot)$, then it is not **consistent** $(\Gamma \vdash \bot)$.

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Equivalently, if $\Gamma := \Sigma \cup \{\neg\sigma\}$ is not satisfiable $(\Gamma \models \bot)$, then it is not consistent $(\Gamma \vdash \bot)$.

Contrapositively, if Γ is consistent, then it is satisfiable
Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Equivalently, if $\Gamma := \Sigma \cup \{\neg\sigma\}$ is not satisfiable $(\Gamma \models \bot)$, then it is not consistent $(\Gamma \vdash \bot)$.

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model).

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Equivalently, if $\Gamma := \Sigma \cup \{\neg\sigma\}$ is not satisfiable $(\Gamma \models \bot)$, then it is not consistent $(\Gamma \vdash \bot)$.

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Equivalently, if $\Gamma := \Sigma \cup \{\neg\sigma\}$ is not satisfiable $(\Gamma \models \bot)$, then it is not consistent $(\Gamma \vdash \bot)$.

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Strategy to achieve our goal:

() Show that a consistent theory Γ can be enlarged to a "Henkin theory".

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Equivalently, if $\Gamma := \Sigma \cup \{\neg\sigma\}$ is not satisfiable $(\Gamma \models \bot)$, then it is not consistent $(\Gamma \vdash \bot)$.

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Strategy to achieve our goal:

- **()** Show that a consistent theory Γ can be enlarged to a "Henkin theory".
- 2 Show that a Henkin theory has a model.

Our goal is to prove that $\Sigma \models \sigma$ implies $\Sigma \vdash \sigma$.

Equivalently, if $\Gamma := \Sigma \cup \{\neg\sigma\}$ is not satisfiable $(\Gamma \models \bot)$, then it is not consistent $(\Gamma \vdash \bot)$.

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model). (This reformulation is worth remembering!)

Strategy to achieve our goal:

- **()** Show that a consistent theory Γ can be enlarged to a "Henkin theory".
- **②** Show that a Henkin theory has a model.
- **(a)** Show that a model of an enlargement of Γ is also a model of Γ .

Df. A theory Γ is a Henkin theory if it is

1 consistent,

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

Meanings:

• A theory is **consistent** if you can't prove falsity from it:

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

Meanings:

• A theory is **consistent** if you can't prove falsity from it:

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

- A theory is consistent if you can't prove falsity from it:
 Γ ⊬ ⊥.
- **2** A consistent theory Γ is **complete** if it decides every sentence:

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

- A theory is consistent if you can't prove falsity from it:
 Γ ⊬ ⊥.
- **2** A consistent theory Γ is **complete** if it decides every sentence:

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

- A theory is **consistent** if you can't prove falsity from it: $\Gamma \not\vdash \bot$.
- A consistent theory Γ is complete if it decides every sentence: For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.

- **Df.** A theory Γ is a Henkin theory if it is
 - **0** consistent,
 - **2** complete, and
 - has witnesses.

- A theory is **consistent** if you can't prove falsity from it: $\Gamma \not\vdash \bot$.
- A consistent theory Γ is complete if it decides every sentence: For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.
- A theory Γ has witnesses if whenever φ(x) is a formula with at most one free variable, then ((∃x)φ(x) → φ(c)) ∈ Γ for some constant c.

- **Df.** A theory Γ is a Henkin theory if it is
 - **0** consistent,
 - **2** complete, and
 - has witnesses.

- A theory is **consistent** if you can't prove falsity from it: $\Gamma \not\vdash \bot$.
- A consistent theory Γ is complete if it decides every sentence: For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.
- A theory Γ has witnesses if whenever φ(x) is a formula with at most one free variable, then ((∃x)φ(x) → φ(c)) ∈ Γ for some constant c.

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

Meanings:

- A theory is **consistent** if you can't prove falsity from it: $\Gamma \not\vdash \bot$.
- A consistent theory Γ is complete if it decides every sentence: For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.
- A theory Γ has witnesses if whenever φ(x) is a formula with at most one free variable, then ((∃x)φ(x) → φ(c)) ∈ Γ for some constant c.

Henkin's key insight is that if \mathbb{A} is a structure, then the theory of its "expansion by constants", $\Gamma = \text{Th}(\mathbb{A}_A)$, is a Henkin theory.

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

Meanings:

- A theory is **consistent** if you can't prove falsity from it: $\Gamma \not\vdash \bot$.
- A consistent theory Γ is complete if it decides every sentence: For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.
- A theory Γ has witnesses if whenever φ(x) is a formula with at most one free variable, then ((∃x)φ(x) → φ(c)) ∈ Γ for some constant c.

Henkin's key insight is that if \mathbb{A} is a structure, then the theory of its "expansion by constants", $\Gamma = \text{Th}(\mathbb{A}_A)$, is a Henkin theory. Conversely, every Henkin theory arises in this way.

- **Df.** A theory Γ is a Henkin theory if it is
 - consistent,
 - **2** complete, and
 - has witnesses.

Meanings:

- A theory is **consistent** if you can't prove falsity from it: $\Gamma \not\vdash \bot$.
- A consistent theory Γ is complete if it decides every sentence: For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.
- A theory Γ has witnesses if whenever φ(x) is a formula with at most one free variable, then ((∃x)φ(x) → φ(c)) ∈ Γ for some constant c.

Henkin's key insight is that if \mathbb{A} is a structure, then the theory of its "expansion by constants", $\Gamma = \text{Th}(\mathbb{A}_A)$, is a Henkin theory. Conversely, every Henkin theory arises in this way. Moreover, $\text{Th}(\mathbb{A}_A)$ 'explains' clearly how to construct its canonical model, \mathbb{A}_A .

[Idea of proof:

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$,

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ .

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof:

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \rightarrow \varphi(c)\} \vdash \bot$ where $c \notin L$.

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \rightarrow \varphi(c)\} \vdash \bot$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x)\varphi(x) \rightarrow \varphi(c))$,

Lindenbaum's Theorem. Every consistent *L*-theory can be enlarged to a complete *L*-theory.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \to \varphi(c)\} \vdash \bot$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x)\varphi(x) \to \varphi(c))$, or $\Gamma \vdash (\exists x)\varphi(x) \land \neg \varphi(c)$.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \rightarrow \varphi(c)\} \vdash \bot$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x)\varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash (\exists x)\varphi(x) \land \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \rightarrow \varphi(c)\} \vdash \bot$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x)\varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash (\exists x)\varphi(x) \land \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

 $(\exists x)\varphi(x)\wedge\neg\varphi(c),(\forall x)((\exists x)\varphi(x)\wedge\neg\varphi(x)),(\exists x)\varphi(x)\wedge\neg(\exists x)\varphi(x)),\bot.$

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \rightarrow \varphi(c)\} \vdash \bot$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x)\varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash (\exists x)\varphi(x) \land \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

 $(\exists x)\varphi(x) \land \neg\varphi(c), (\forall x)((\exists x)\varphi(x) \land \neg\varphi(x)), (\exists x)\varphi(x) \land \neg(\exists x)\varphi(x)), \bot.$ Thus $\Gamma \vdash \bot$.

[Idea of proof: if $\Gamma \not\vdash \sigma$, then $\Gamma \cup \{\neg\sigma\} \not\vdash \bot$, so $\Gamma \cup \{\neg\sigma\}$ is a consistent enlargement of Γ . Keep doing this until you arrive at a complete theory.]

Henkin's Theorem. Every consistent theory can be enlarged to a consistent theory with witnesses, provided we allow ourselves to enlarge the language to include more constant symbols.

[Idea of proof: suppose $\Gamma \cup \{(\exists x)\varphi(x) \rightarrow \varphi(c)\} \vdash \bot$ where $c \notin L$. Then $\Gamma \vdash \neg((\exists x)\varphi(x) \rightarrow \varphi(c))$, or $\Gamma \vdash (\exists x)\varphi(x) \land \neg \varphi(c)$. Need quantifier axioms and rules which permit this deduction:

 $(\exists x)\varphi(x)\wedge\neg\varphi(c),(\forall x)((\exists x)\varphi(x)\wedge\neg\varphi(x)),(\exists x)\varphi(x)\wedge\neg(\exists x)\varphi(x)),\bot.$

Thus $\Gamma \vdash \bot$. Now repeat the idea of Lindenbaum's Theorem with σ equal to $\neg((\exists x)\varphi(x) \rightarrow \varphi(c)).$]
Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.) Let C be the set of constants in L.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.) Let C be the set of constants in L. It will be the domain of an L-structure.

Let *H* be a Henkin *L*-theory. (= consistent, complete, with witnesses.) Let *C* be the set of constants in *L*. It will be the domain of an *L*-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.) Let C be the set of constants in L. It will be the domain of an L-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

If $R(x_1, \ldots, x_n)$ is a predicate symbol, declare that $R^{\mathbb{C}}(c_1, \ldots, c_n)$ is true if $R(c_1, \ldots, c_n) \in H$.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.) Let C be the set of constants in L. It will be the domain of an L-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

If $R(x_1, \ldots, x_n)$ is a predicate symbol, declare that $R^{\mathbb{C}}(c_1, \ldots, c_n)$ is true if $R(c_1, \ldots, c_n) \in H$.

If $F(x_1, \ldots, x_n)$ is a function symbol, declare that $F^{\mathbb{C}}(c_1, \ldots, c_n) = d$ is true if $(F(c_1, \ldots, c_n) = d) \in H$.

Let *H* be a Henkin *L*-theory. (= consistent, complete, with witnesses.) Let *C* be the set of constants in *L*. It will be the domain of an *L*-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

If $R(x_1, \ldots, x_n)$ is a predicate symbol, declare that $R^{\mathbb{C}}(c_1, \ldots, c_n)$ is true if $R(c_1, \ldots, c_n) \in H$.

If $F(x_1, \ldots, x_n)$ is a function symbol, declare that $F^{\mathbb{C}}(c_1, \ldots, c_n) = d$ is true if $(F(c_1, \ldots, c_n) = d) \in H$.

Define an equivalence relation θ on C by $c \equiv d \pmod{\theta}$ if $(c = d) \in H$.

Let *H* be a Henkin *L*-theory. (= consistent, complete, with witnesses.) Let *C* be the set of constants in *L*. It will be the domain of an *L*-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

If $R(x_1, \ldots, x_n)$ is a predicate symbol, declare that $R^{\mathbb{C}}(c_1, \ldots, c_n)$ is true if $R(c_1, \ldots, c_n) \in H$.

If $F(x_1, \ldots, x_n)$ is a function symbol, declare that $F^{\mathbb{C}}(c_1, \ldots, c_n) = d$ is true if $(F(c_1, \ldots, c_n) = d) \in H$.

Define an equivalence relation θ on C by $c \equiv d \pmod{\theta}$ if $(c = d) \in H$. It will be the case that $\mathbb{C}/\theta \models H$.

Let *H* be a Henkin *L*-theory. (= consistent, complete, with witnesses.) Let *C* be the set of constants in *L*. It will be the domain of an *L*-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

If $R(x_1, \ldots, x_n)$ is a predicate symbol, declare that $R^{\mathbb{C}}(c_1, \ldots, c_n)$ is true if $R(c_1, \ldots, c_n) \in H$.

If $F(x_1, \ldots, x_n)$ is a function symbol, declare that $F^{\mathbb{C}}(c_1, \ldots, c_n) = d$ is true if $(F(c_1, \ldots, c_n) = d) \in H$.

Define an equivalence relation θ on C by $c \equiv d \pmod{\theta}$ if $(c = d) \in H$. It will be the case that $\mathbb{C}/\theta \models H$. In fact, $H = \text{Th}(\mathbb{C}/\theta)$.

Let *H* be a Henkin *L*-theory. (= consistent, complete, with witnesses.) Let *C* be the set of constants in *L*. It will be the domain of an *L*-structure. If $c \in L$, then define $c^{\mathbb{C}} = c \in C$.

If $R(x_1, \ldots, x_n)$ is a predicate symbol, declare that $R^{\mathbb{C}}(c_1, \ldots, c_n)$ is true if $R(c_1, \ldots, c_n) \in H$.

If $F(x_1, \ldots, x_n)$ is a function symbol, declare that $F^{\mathbb{C}}(c_1, \ldots, c_n) = d$ is true if $(F(c_1, \ldots, c_n) = d) \in H$.

Define an equivalence relation θ on C by $c \equiv d \pmod{\theta}$ if $(c = d) \in H$. It will be the case that $\mathbb{C}/\theta \models H$. In fact, $H = \text{Th}(\mathbb{C}/\theta)$. \mathbb{C}/θ is called the

Henkin model of H.

Compactness Theorem.

Compactness Theorem. If Σ is a set of sentences

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model,

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model.

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive:

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model.

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \bot$,

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \bot$, so $\Sigma \vdash \bot$.

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \bot$, so $\Sigma \vdash \bot$. If $\alpha_1, \ldots, \alpha_k, \bot$ is a Σ -proof of \bot ,

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \bot$, so $\Sigma \vdash \bot$. If $\alpha_1, \ldots, \alpha_k, \bot$ is a Σ -proof of \bot , then let $\Sigma_0 \subseteq \Sigma$ be the set of sentences from Σ that are used in the proof.

Compactness Theorem. If Σ is a set of sentences and each finite subset of Σ has a model, then Σ has a model. (If Σ is finitely satisfiable, then it is satisfiable.)

[Proof of the contrapositive: Assume that Σ has no model. Then $\Sigma \models \bot$, so $\Sigma \vdash \bot$. If $\alpha_1, \ldots, \alpha_k, \bot$ is a Σ -proof of \bot , then let $\Sigma_0 \subseteq \Sigma$ be the set of sentences from Σ that are used in the proof. The given proof is a Σ_0 -proof of \bot . This shows that the finite subset $\Sigma_0 \subseteq \Sigma$ has no model.]

Application 1.

Application 1. (Finiteness is not 1st-order expressible)

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L' be the expansion of L to include an infinite set $C = \{c_0, c_1, \ldots\}$ of 'new' constant symbols.

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L' be the expansion of L to include an infinite set $C = \{c_0, c_1, \ldots\}$ of 'new' constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid i \neq j\}$.

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L' be the expansion of L to include an infinite set $C = \{c_0, c_1, \ldots\}$ of 'new' constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid i \neq j\}$. T' is finitely satisfiable, so it is satisfiable.

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L' be the expansion of L to include an infinite set $C = \{c_0, c_1, \ldots\}$ of 'new' constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid i \neq j\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is an infinite model of T.

Application 1. (Finiteness is not 1st-order expressible) Let's argue that if T is an L-theory with arbitrarily large finite models, then T has an infinite model.

Let L' be the expansion of L to include an infinite set $C = \{c_0, c_1, \ldots\}$ of 'new' constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid i \neq j\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is an infinite model of T. \Box

Application 2.

Application 2. (Large models)
Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \ge |L|$.

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \ge |L|$.

Let L' be the expansion of L to include an infinite set $C = \{c_{\alpha} \mid \alpha < \kappa\}$ of new constant symbols.

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \ge |L|$.

Let L' be the expansion of L to include an infinite set $C = \{c_{\alpha} \mid \alpha < \kappa\}$ of new constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid 0 < i < j < \kappa\}.$

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \ge |L|$.

Let L' be the expansion of L to include an infinite set $C = \{c_{\alpha} \mid \alpha < \kappa\}$ of new constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid 0 < i < j < \kappa\}$. T' is finitely satisfiable, so it is satisfiable.

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \ge |L|$.

Let L' be the expansion of L to include an infinite set $C = \{c_{\alpha} \mid \alpha < \kappa\}$ of new constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid 0 < i < j < \kappa\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is a model of T of size at least κ .

Application 2. (Large models) Let's argue that if T is an L-theory and T has an infinite model, then T has a model of size κ for every $\kappa \ge |L|$.

Let L' be the expansion of L to include an infinite set $C = \{c_{\alpha} \mid \alpha < \kappa\}$ of new constant symbols. Let T' be the set of sentences $T \cup \{c_i \neq c_j \mid 0 < i < j < \kappa\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is a model of T of size at least κ . \Box

Application 3.

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R})

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal.

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Let L' be the expansion of L to include a single new constant symbol ε . Let T' be the set of sentences $T \cup \{0 < \varepsilon < 1/n \mid n = 1, 2, 3, ...\}$.

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Let L' be the expansion of L to include a single new constant symbol ε . Let T' be the set of sentences $T \cup \{0 < \varepsilon < 1/n \mid n = 1, 2, 3, ...\}$. T' is finitely satisfiable, so it is satisfiable.

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Let L' be the expansion of L to include a single new constant symbol ε . Let T' be the set of sentences $T \cup \{0 < \varepsilon < 1/n \mid n = 1, 2, 3, ...\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is a model of T

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Let L' be the expansion of L to include a single new constant symbol ε . Let T' be the set of sentences $T \cup \{0 < \varepsilon < 1/n \mid n = 1, 2, 3, ...\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is a model of T (hence is a field elementarily equivalent to \mathbb{R})

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Let L' be the expansion of L to include a single new constant symbol ε . Let T' be the set of sentences $T \cup \{0 < \varepsilon < 1/n \mid n = 1, 2, 3, ...\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is a model of T (hence is a field elementarily equivalent to \mathbb{R}) which has a positive infinitesimal.

Application 3. (Infinitesimals are consistent with the theory of the real field \mathbb{R}) Let's argue that if $T = \text{Th}(\mathbb{R})$, then T has a model with a positive infinitesimal. That is, T has a model \mathbb{R}' that is elementarily equivalent to \mathbb{R} which has an element ε such that $0 < \varepsilon < 1/n$ holds for every positive integer n.

Let L' be the expansion of L to include a single new constant symbol ε . Let T' be the set of sentences $T \cup \{0 < \varepsilon < 1/n \mid n = 1, 2, 3, ...\}$. T' is finitely satisfiable, so it is satisfiable. Any model of T' is a model of T (hence is a field elementarily equivalent to \mathbb{R}) which has a positive infinitesimal. \Box

Application 4.

Application 4. (Finitely axiomatizable classes)

Application 4. (Finitely axiomatizable classes) Let \mathcal{K} be the class of all *L*-structures.

Application 4. (Finitely axiomatizable classes) Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass.

Application 4. (Finitely axiomatizable classes) Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

Application 4. (Finitely axiomatizable classes) Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

(a) \mathcal{K}_0 is finitely axiomatizable.

Application 4. (Finitely axiomatizable classes) Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

(a) \mathcal{K}_0 is finitely axiomatizable.

Application 4. (Finitely axiomatizable classes)

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence.

Application 4. (Finitely axiomatizable classes)

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence.

Application 4. (Finitely axiomatizable classes)

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)

Application 4. (Finitely axiomatizable classes)

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = \text{Mod}(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

Application 4. (Finitely axiomatizable classes)

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = \text{Mod}(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = \text{Mod}(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

 $[(a) \Leftrightarrow (b)]$

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

 $[(a) \Leftrightarrow (b)] \mathcal{K}_0$ is axiomatizable by $\{\sigma_1, \ldots, \sigma_n\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma := \sigma_1 \land \sigma_2 \land \cdots \land \sigma_n$.

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

 $[(a) \Leftrightarrow (b)] \mathcal{K}_0$ is axiomatizable by $\{\sigma_1, \dots, \sigma_n\}$ iff it is axiomatizable by $\{\sigma\}$ for $\sigma := \sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n$. $[(b) \Rightarrow (c)]$

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

$$\begin{split} & [(a) \Leftrightarrow (b)] \, \mathcal{K}_0 \text{ is axiomatizable by } \{\sigma_1, \dots, \sigma_n\} \text{ iff it is axiomatizable by } \\ \{\sigma\} \text{ for } \sigma := \sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n. \\ & [(b) \Rightarrow (c)] \text{ If } \mathcal{K}_0 = \text{Mod}(\sigma), \text{ then } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\neg \sigma). \end{split}$$

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

 $[(a) \Leftrightarrow (b)] \mathcal{K}_0 \text{ is axiomatizable by } \{\sigma_1, \dots, \sigma_n\} \text{ iff it is axiomatizable by } \{\sigma\} \text{ for } \sigma := \sigma_1 \land \sigma_2 \land \dots \land \sigma_n.$ $[(b) \Rightarrow (c)] \text{ If } \mathcal{K}_0 = \text{Mod}(\sigma), \text{ then } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\neg \sigma).$ $[(c) \Rightarrow (a)]$

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

$$\begin{split} & [(a) \Leftrightarrow (b)] \, \mathcal{K}_0 \text{ is axiomatizable by } \{\sigma_1, \dots, \sigma_n\} \text{ iff it is axiomatizable by } \\ \{\sigma\} \text{ for } \sigma := \sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n. \\ & [(b) \Rightarrow (c)] \text{ If } \mathcal{K}_0 = \text{Mod}(\sigma), \text{ then } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\neg \sigma). \\ & [(c) \Rightarrow (a)] \text{ If } \mathcal{K}_0 = \text{Mod}(\Sigma) \text{ and } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\Gamma), \text{ then } \\ & \text{Mod}(\Sigma \cup \Gamma) = \mathcal{K}_0 \cap (\mathcal{K} \setminus \mathcal{K}_0) = \emptyset, \text{ so } \Sigma \cup \Gamma \text{ is unsatisfiable.} \end{split}$$
Applications of Compactness

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

$$\begin{split} & [(a) \Leftrightarrow (b)] \, \mathcal{K}_0 \text{ is axiomatizable by } \{\sigma_1, \dots, \sigma_n\} \text{ iff it is axiomatizable by } \\ \{\sigma\} \text{ for } \sigma := \sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n. \\ & [(b) \Rightarrow (c)] \text{ If } \mathcal{K}_0 = \text{Mod}(\sigma), \text{ then } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\neg \sigma). \\ & [(c) \Rightarrow (a)] \text{ If } \mathcal{K}_0 = \text{Mod}(\Sigma) \text{ and } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\Gamma), \text{ then } \\ & \text{Mod}(\Sigma \cup \Gamma) = \mathcal{K}_0 \cap (\mathcal{K} \setminus \mathcal{K}_0) = \emptyset, \text{ so } \Sigma \cup \Gamma \text{ is unsatisfiable. By } \\ & \text{Compactness, there are finite subsets } \Sigma_0 = \{\sigma_1, \dots, \sigma_m\} \subseteq \Sigma \text{ and } \\ & \Gamma_0 = \{\gamma_1, \dots, \gamma_n\} \subseteq \Gamma \text{ such that } \Sigma_0 \cup \Gamma_0 \text{ is unsatisfiable.} \end{split}$$

Applications of Compactness

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

$$\begin{split} & [(a) \Leftrightarrow (b)] \, \mathcal{K}_0 \text{ is axiomatizable by } \{\sigma_1, \dots, \sigma_n\} \text{ iff it is axiomatizable by } \\ \{\sigma\} \text{ for } \sigma := \sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n. \\ & [(b) \Rightarrow (c)] \text{ If } \mathcal{K}_0 = \text{Mod}(\sigma), \text{ then } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\neg \sigma). \\ & [(c) \Rightarrow (a)] \text{ If } \mathcal{K}_0 = \text{Mod}(\Sigma) \text{ and } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\Gamma), \text{ then } \\ & \text{Mod}(\Sigma \cup \Gamma) = \mathcal{K}_0 \cap (\mathcal{K} \setminus \mathcal{K}_0) = \emptyset, \text{ so } \Sigma \cup \Gamma \text{ is unsatisfiable. By } \\ & \text{Compactness, there are finite subsets } \Sigma_0 = \{\sigma_1, \dots, \sigma_m\} \subseteq \Sigma \text{ and } \\ & \Gamma_0 = \{\gamma_1, \dots, \gamma_n\} \subseteq \Gamma \text{ such that } \Sigma_0 \cup \Gamma_0 \text{ is unsatisfiable. Mod}(\Sigma_0) \text{ contains } \\ & \mathcal{K}_0 \text{ and is disjoint from Mod}(\Gamma_0) \text{ (which contains } \mathcal{K} \setminus \mathcal{K}_0), \text{ so } \\ & \text{Mod}(\Sigma_0) = \mathcal{K}_0. \end{split}$$

Applications of Compactness

Application 4. (Finitely axiomatizable classes)

Let \mathcal{K} be the class of all *L*-structures. Let $\mathcal{K}_0 \subseteq \mathcal{K}$ be a subclass. The following are equivalent:

- (a) \mathcal{K}_0 is finitely axiomatizable.
- (b) \mathcal{K}_0 is axiomatizable by a single sentence. ($\mathcal{K}_0 = Mod(\sigma)$)
- (c) \mathcal{K}_0 and its complement $\mathcal{K} \setminus \mathcal{K}_0$ are both axiomatizable.

$$\begin{split} & [(a) \Leftrightarrow (b)] \, \mathcal{K}_0 \text{ is axiomatizable by } \{\sigma_1, \dots, \sigma_n\} \text{ iff it is axiomatizable by } \\ \{\sigma\} \text{ for } \sigma := \sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n. \\ & [(b) \Rightarrow (c)] \text{ If } \mathcal{K}_0 = \text{Mod}(\sigma), \text{ then } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\neg \sigma). \\ & [(c) \Rightarrow (a)] \text{ If } \mathcal{K}_0 = \text{Mod}(\Sigma) \text{ and } \mathcal{K} \setminus \mathcal{K}_0 = \text{Mod}(\Gamma), \text{ then } \\ & \text{Mod}(\Sigma \cup \Gamma) = \mathcal{K}_0 \cap (\mathcal{K} \setminus \mathcal{K}_0) = \emptyset, \text{ so } \Sigma \cup \Gamma \text{ is unsatisfiable. By } \\ & \text{Compactness, there are finite subsets } \Sigma_0 = \{\sigma_1, \dots, \sigma_m\} \subseteq \Sigma \text{ and } \\ & \Gamma_0 = \{\gamma_1, \dots, \gamma_n\} \subseteq \Gamma \text{ such that } \Sigma_0 \cup \Gamma_0 \text{ is unsatisfiable. Mod}(\Sigma_0) \text{ contains } \\ & \mathcal{K}_0 \text{ and is disjoint from Mod}(\Gamma_0) \text{ (which contains } \mathcal{K} \setminus \mathcal{K}_0), \text{ so } \\ & \text{Mod}(\Sigma_0) = \mathcal{K}_0. \ \Box \end{split}$$