
The Compactness Theorem.

Compactness Theorem. If Σ is a finitely satisfiable set of sentences, then Σ is satisfiable.

The first stage of the proof is to enlarge Σ to a finitely satisfiable set of sentences having
additional properties.

If Λ is a directed set, then a Λ-directed family is a Λ-indexed family of sets, (Aλ)λ∈Λ, such
that µ < ν implies Aµ ⊆ Aν .

Lemma 1. Let Λ is a directed set, let (Lλ)λ∈Λ be Λ-directed family of languages, and let
(Σλ)λ∈Λ be a Λ-directed family of sets of sentences with Σλ ⊆ Lλ. If each Σλ is finitely
satisfiable, then

⋃
λ∈Λ Σλ is a finitely satisfiable set of

⋃
λ∈Λ Lλ-sentences.

Proof. Any finite subset Σ0 of
⋃
λ∈Λ Σλ lies in some Σλ, since Λ is directed. Σ0 can be satisfied

by some Lλ-structure, A, since Σλ is finitely satisfiable and all symbols of Σλ belong to Lλ.
An arbitrary expansion of A to the language

⋃
λ∈Λ Lλ with still satisfy Σ0. �

Lemma 2. If Σ is a finitely satisfiable set of L-sentences, then there is a superset Σ′ ⊇ Σ
of L-sentences that

(i) is finitely satisfiable, and
(ii) satisfies the completeness condition for L, which is the statement that σ ∈ Σ′ or

(¬σ) ∈ Σ′ for every L-sentence σ.

Proof. Let κ = |L| and let (σλ)λ<κ be an enumeration of all L-sentences. Define a sequence
of sets of L-sentences by

Σ0 := Σ

Σλ+1 :=

{
Σλ ∪ {σλ} if finitely satisfiable;

Σλ ∪ {(¬σλ)} else.

Σλ :=
⋃
µ<λ Σµ if λ is limit.

Σ0 is finitely satisfiable by assumption.
Suppose that Σλ is finitely satisfiable but Σλ+1 is not. Then neither Σλ ∪ {σ} nor Σλ ∪
{(¬σ)} is finitely satisfiable, meaning that there exists a finite (satisfiable) subset Γ ⊆ Σ
such that neither Γ ∪ {σ} nor Γ ∪ {(¬σ)} is satisfiable. If A is a model of Γ, we are forced
to conclude that neither σ nor (¬σ) holds in A, which is impossible.

Finally, if Σµ is finitely satisfiable for all µ < λ, λ limit, then Σλ is finitely satisfiable by
Lemma 1.

This proves that Σ′ := Σκ is finitely satisfiable. Since each L-sentence is some σλ, and
Σ′ (⊇ Σλ+1) contains either σλ or (¬σλ), Σ′ satisfies the completeness condition for L. �

Lemma 3. If Σ is a finitely satisfiable set of L-sentences, then there are a set C of new
constants, an extended language L(C) = L ∪ C, and a superset Σ′ ⊇ Σ consisting of L(C)-
sentences that
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(i) is finitely satisfiable, and
(ii) has witnesses for L-formulas, which means that for every L-formula α(x) in

one free variable there is a constant symbol c such that ((∃xα(x))→ α(c)) ∈ Σ′.

Proof. Let κ = |L| and let (αλ(x))λ<κ be an enumeration of all L-formulas with one free
variable. Let C be a set of κ-many new constant symbols. Define a sequence of sets of
L(C)-sentences by

Σ0 := Σ
Σλ+1 := Σλ ∪ {((∃xαλ(x))→ α(cλ))}

Σλ :=
⋃
µ<λ Σµ if λ is limit.

Suppose that Σλ is finitely satisfiable but Σλ+1 is not. Let Γ ⊆ Σλ be a finite set such
that Γ ∪ {((∃xαλ(x)) → α(cλ))} is unsatisfiable. Γ itself is satisfiable, so there must be a
structure A in an appropriate language that satisfies Γ; we may assume that the language is
L(Cλ) where Cλ = {cµ | µ < λ}. We claim that A can be modified to an L(Cλ+1)-structure
satisfying Γ ∪ {((∃xαλ(x))→ α(cλ))}.

If A |= (∃xα(x)), A |= α[a] for some a ∈ A. Define cAλ = a. If A 6|= (∃xα(x)),
then define cAλ ∈ A arbitrarily. By interpreting cλ in A we create a L(Cλ+1)-structure
Ac := 〈A; cλ〉. This structure still satisfies Γ, since cλ does not appear in any sentence in Γ,
but it now also satisfies ((∃xαλ(x))→ α(cλ)). This contradicts our earlier supposition that
Γ ∪ {((∃xαλ(x))→ α(cλ))} is unsatisfiable. �

Corollary 4. If Σ is a finitely satisfiable set of L-sentences, then there are a set C of
new constants, an extended language L(C) = L ∪ C, and a superset Σ′ ⊇ Σ consisting of
L(C)-sentences that

(i) is finitely satisfiable, and
(ii) satisfies the completeness condition for L(C), and

(iii) has witnesses for L(C)-formulas.

Proof. Starting with Σ, we can use Lemmas 2 and 3 to create an increasing chain of
finitely satisfiable sets Σ ⊆ Σc ⊆ Σcw ⊆ Σcwc ⊆ Σcwcw ⊆ · · · in increasing languages
L = L ⊆ L(Cw) = L(Cw) ⊆ L(Cww) = · · · , where subscript c means “enforce the complete-
ness condition” and subscript w means “add witnesses”. The union set Σ′ will be finitely
satisfiable and, with respect to the union language L′, will satisfy the completeness condition
and have witnesses. �

Proof of the Compactness Theorem (really the second stage). Call a set Σ of L-sentences a
Henkin set if it is finitely satisfiable, satisfies the completeness condition for L, and has
witnesses for L-formulas. We will prove the Compactness Theorem in the special case where
Σ is a Henkin set, then deduce that the theorem holds in general.

We proceed to construct a model of Σ under the assumption that it is a Henkin set.

Step I. (Defining the universe.)
Let C be the set of constant symbols of L. Define a relation ∼ on C by: c ∼ d iff

(c
.
= d) ∈ Σ.
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Claim 5. ∼ is an equivalence relation on C.

Proof of claim. If ∼ were not reflexive on C, then there would be a c ∈ C such that (c
.
=

c) /∈ Σ. The completeness condition for Σ forces (¬(c
.
= c)) ∈ Σ. By the finite satisfiability

of Σ there must be an L-structure X satisfying (¬(c
.
= c)). But this is impossible, since c

interprets as an element cX ∈ X,
.
= interprets as equality on X, and cX 6= cX never holds.

Similarly, if ∼ failed to be symmetric or transitive on C, then applying the completeness
condition and the finite satisfiability of Σ we obtain a contradiction. �

Write c for c/ ∼ and C for C/ ∼. The universe of our model will be A := C.

Step II. (Interpreting the L-symbols.)
We will interpret the nonlogical symbols of L according to the following rules.

(R) If R is an n-ary relation symbol, then define

(c0, . . . , cn−1) ∈ RA iff R(c0, . . . , cn−1) ∈ Σ.

(F) If F is an n-ary function symbol, then define

FA(c0, . . . , cn−1) = cn iff (F (c0, . . . , cn−1)
.
= cn) ∈ Σ.

(c) If c is a constant symbol, then define cA = c.

To eliminate any concerns about the validity of these definitions we prove the following

Claim 6. (1) For every term t with no variables there is an element c ∈ C such that
(t
.
= c) ∈ Σ; moreover, tA = cA.

(2) If for all subscripts i we have ci ∈ C, ti is a term with no variables, and (ti
.
= ci) ∈ Σ,

then R(t0, . . . , tn−1) ∈ Σ iff R(c0, . . . , cn−1) ∈ Σ.
(3) If for all subscripts i we have ci ∈ C, ti is a term with no variables, and (ti

.
= ci) ∈ Σ,

then (F (t0, . . . , tn−1)
.
= tn) ∈ Σ iff (F (c0, . . . , cn−1)

.
= cn) ∈ Σ.

Proof of claim. If t is a constant, the first part of Item (1) follows from the fact that ∼ is
reflexive. The second part follows from the fact that the equality relation on A is reflexive.
Assume that t = F (t0, . . . , tn−1) and that Item (1) is true for each ti. Then there are
constants ci such that (ti

.
= ci) ∈ Σ and tAi = cAi . For the formula α(x) := (F (c0, . . . , cn−1)

.
=

x) there is a constant symbol c such that ((∃xα(x)) → α(c)) ∈ Σ, since Σ has witnesses.
The formula (∃xα(x)) is valid, since F is an function symbol, so (∃xα(x)) ∈ Σ. It follows
that α(c) ∈ Σ, else by completeness Σ contains the unsatisfiable finite set

{(∃xα(x)), ((∃xα(x))→ α(c)), (¬α(c))}.
This shows that (i) (F (c0, . . . , cn−1)

.
= c) ∈ Σ, hence (ii) FA(cA0 , . . . , c

A
n−1) = cA.

Regarding (i), the set

{(t0
.
= c0), . . . , (tn−1

.
= cn−1), (F (c0, . . . , cn−1)

.
= c), (¬(F (t0, . . . , tn−1)

.
= c))}

is unsatisfiable, and each sentence but the last belongs to Σ. By the completeness and finite
satisfiability of Σ we have (F (t0, . . . , tn−1)

.
= c) ∈ Σ (or (t

.
= c) ∈ Σ), as desired.
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Regarding (ii), we have tA = FA(tA0 , . . . , t
A
n−1) = FA(cA0 , . . . , c

A
n−1) = cA. This completes

the proof of Item (1).
If Item (2) were false, then by completeness Σ would contain either

{(t0
.
= c0), . . . , (tn−1

.
= cn−1), R(t0, . . . , tn−1), (¬R(c0, . . . , cn−1))}

or
{(t0

.
= c0), . . . , (tn−1

.
= cn−1), (¬R(t0, . . . , tn−1))R(c0, . . . , cn−1), }.

Both are unsatisfiable, so (2) is not false. A similar argument proves (3). �

Step III. (The L-structure A := 〈A;R, . . . , F, . . . , c, . . .〉 satisfies Σ.)

Claim 7. If σ is an L-sentence, then A |= σ iff σ ∈ Σ.

Proof of claim. Assume first that σ is R(t0, . . . , tn−1) for some R, n and ti. Since this is
an atomic sentence, the ti have no variables, hence Claim 6 (1) guarantees that there are
constant symbols ci such that (ti

.
= ci) ∈ Σ and tAi = cAi . We have the following equivalences:

A |= σ iff A |= R(t0, . . . , tn−1)
iff (tA0 , . . . , t

A
n−1) ∈ RA

iff (cA0 , . . . , c
A
n−1) ∈ RA

iff R(c0, . . . , cn−1) ∈ Σ
iff R(t0, . . . , tn−1) ∈ Σ
iff σ ∈ Σ.

Each step follows from the definitions or from Claim 6.
The case where σ is (F (t0, . . . , tn−1)

.
= tn) for some F , n and ti is similar.

Now assume that σ = (α ∧ β). We have the following equivalences:

A |= (α ∧ β) iff A |= α and A |= β
iff α ∈ Σ and β ∈ Σ
iff (α ∧ β) ∈ Σ.

The only step requiring justification is the equivalence of the last two lines. If we had α, β ∈ Σ
and (α∧β) /∈ Σ, then the completeness condition yields that {α, β, (¬(α∧β))} ⊆ Σ, contrary
to the finite satisfiability of Σ. In the reverse direction, if (α∧ β) ∈ Σ and, say, α /∈ Σ, then
{(¬α), (α ∧ β)} ⊆ Σ contradicts the finite satisfiability of Σ.

The case where σ = (¬α) can be argued similarly.
Finally we assume that σ = (∃xα(x)). We have the following equivalences:

A |= (∃xα(x)) iff A |= α[a] for some a ∈ A
iff A |= α(c) for some c ∈ C
iff α(c) ∈ Σ for some c ∈ C
iff (∃xα(x)) ∈ Σ.

We need to defend the claim that the last two lines are equivalent. The claim that α(c) ∈ Σ
for some c ∈ C implies (∃xα(x)) ∈ Σ follows from the completeness condition and the finite
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satisfiability of Σ. The claim that (∃xα(x)) ∈ Σ implies α(c) ∈ Σ for some c ∈ C follows
from finite satisfiability and the fact that Σ has witnesses for L-formulas. �

Step IV. (The theorem for general Σ follows from the theorem for Σ a Henkin set.)
Let Σ be a finitely satisfiable set of L-sentences. According to Corollary 4 there is a

language L′ ⊇ L and a Henkin set Σ′ ⊇ Σ in the language L′. We have shown that Σ′ has
a model, A. The reduct of A to the symbols in L is a model of Σ. �

Corollary 8. An unsatisfiable set of sentences contains a finite unsatisfiable subset.

Proof. This is the contrapositive of the Compactness Theorem. �

Corollary 9. If Σ |= σ, then Σ0 |= σ for some finite subset Σ0 ⊆ Σ.

Proof. Rewrite Corollary 8 using the equivalence of “Σ |= σ” with “Σ ∪ {(¬σ)} is unsatisfi-
able” (which follows from the definition of |=). �

Corollary 10. If Σ has a model, then Σ has a model of size at most |Σ|+ ω.

Proof. First, there is no harm in assuming that the only nonlogical symbols of L are those
that appear in Σ, so in particular |L| = |Σ| + ω. Next, show that the number of constant
symbols added in the course of the proof is at most |L|. Then |A| = |C/ ∼ | ≤ |C| ≤ |L|. �

The case of Corollary 10 where Σ = {σ} (and hence |Σ| + ω = ω) is called Löwenheim’s
Theorem.

Corollary 11. If Σ has arbitrarily large finite models, then Σ has an infinite model.
If Σ has an infinite model, then Σ has arbitrarily large infinite models.

Proof. Expand the language to contain some infinite set C of new constant symbols, say
{cλ | λ < κ} where κ is an infinite cardinal. Let Γ = {(¬(cµ

.
= cν)) | µ < ν < κ}. If Σ has

arbitrarily large finite models or an infinite model, then Σ ∪ Γ is finitely satisfiable and is
therefore satisfiable. Any model has cardinality at least κ. �

Corollary 12. If Σ ∪ {σ} is a set of L-sentences and σ holds in every infinite model of Σ,
then there is a finite N such that σ holds in every model of Σ of size greater than N .

Proof. If this is not true, then Σ∪ {(¬σ)} has arbitrarily large finite models and no infinite
models, contrary to Corollary 11. �

Corollary 13. The following conditions are equivalent for any class K of L-structures.

(1) K is finitely axiomatizable.
(2) K is axiomatizable by a single L-sentence.
(3) Both K and its complement are axiomatizable.
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Proof. [(1)⇒(2)] Replace a finite set of axioms for K with its conjunction.
[(2)⇒(3)] If σ axiomatizes K, then (¬σ) axiomatizes the complement of K.
[(3)⇒(1)] Suppose that Σ axiomatizes K and Γ axiomatizes its complement. Then Σ∪Γ is

unsatisfiable, so there exist finite sets Σ0 ⊆ Σ and Γ0 ⊆ Γ such that Σ0 ∪Γ0 is unsatisfiable.
I claim that Σ0 axiomatizes K. Σ0 axiomatizes a class containing K, since Σ0 ⊆ Σ. But

the containment cannot be proper, else there is some A /∈ K such that A |= Σ0, and this
would lead to A |= Σ0 ∪ Γ0, contrary to the conclusion of the last paragraph. �

Corollary 14. If T0 ⊂ T1 ⊂ · · · is a strictly increasing chain of L-theories, then the class
of L-structures A such that A 6|= Ti for some i is not elementary.

Proof. The class identified in the corollary is the complement of the class axiomatized by⋃
Ti, so it suffices to show that

⋃
Ti is not finitely axiomatizable. This follows from the fact

that the chain T0 ⊂ T1 ⊂ · · · is strictly increasing and consists of theories. �

Corollary 15. If Σ and Γ axiomatize the same class K and Γ is finite, then there is a finite
subset Σ0 ⊆ Σ that axiomatizes K.

Proof. We may assume that Γ consists of a single sentence γ. Now (¬γ) axiomatizes the
complement of K, so by the argument for Corollary 13 (3)⇒(1) we get that some finite
subset Σ0 ⊆ Σ axiomatizes K. �

Corollary 16. If A and B are elementarily equivalent L-structures, then there is a third
L-structure C that is a common elementary extension of each of them.

Proof. Let AA be the expansion of A by constants and let BB be the expansion of B
by constants. Assume that all the new constant symbols are distinct. I claim that Σ :=
Th(AA)∪Th(BB) is finitely satisfiable. To see this, note that any finite set of sentences from
either theory is equivalent to a single one, so any finite set of sentences in Σ is equivalent
to α(a)∧ β(b) where (i) α(x) and β(x) are L-formulas, (ii) the coordinates of a are symbols
representing elements of A while the coordinates of b are symbols representing elements of
B, and (iii) A |= α(a) and B |= β(b).

Now B |= ∃yβ(y), so we also have A |= ∃yβ(y). Choose a tuple a′ such that A |= β(a′).
Interpreting the symbols in b in A as a′ we get from A a structure in the language L∪{a, b}
satisfying α(a) ∧ β(b), verifying the finite satisfiability of Σ.

Let C be a model of Σ. Then C is a model of Th(AA), making C and elementary extension
of A, similarly of B. �

Corollary 17. If A is an L-structure, then any set of of types of Th(A) can be realized in
some elementary extension of A.

Applications. (Terminology. The following are synonymous with each other: “finitely
axiomatizable class”, “strictly elementary class”, “basic elementary class”, and “EC-class”.
Any class that is the intersection of such classes is an “axiomatizable class”, an “elementary
class”, or an “EC∆- (or ECδ)-class”. The symbols ∆/δ refer to “Durchschnitt”.)
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(1) The class of finite sets (or finite L-structures) is not elementary.
(2) The class of infinite sets is elementary, but not finitely axiomatizable.
(3) (Robinson’s Principle) Let Σ ∪ {σ} be a set of sentences in the language of fields.

Assume that Σ contains the field axioms. Then σ is true in all models of Γ of
characteristic zero iff σ is true in all models of Γ of characteristic p for sufficiently
large p.

(4) (Ax-Grothendieck Theorem) If V ⊆ Cn is an algebraic variety, then any regular map
m : V → V that is injective is also surjective.

(5) The class of simple groups is not elementary.
(6) The class of torsion groups is not elementary.
(7) If G is a group with elements of arbitrarily large finite order, then G is elementarily

equivalent to a group H that has an element of infinite order.
(8) There is no formula τ(x) in the language of groups that defines the set of torsion

elements of a group. (I.e., no τ(x) such that, for every group G, G |= τ [g] iff g is a
torsion element.)

(9) The class of torsion free groups is elementary, but not finitely axiomatizable.
(10) The class of algebraically closed fields of characteristic zero is axiomatizable, but not

finitely axiomatizable.
(11) (∃ nonstandard models of Th(R)) The field of real numbers is elementarily equivalent

to an ordered field F that contains a positive infinitesimal element.
(12) The property of R that every nonempty subset with an upper bound has a least

upper bound cannot be expressed by any set of first-order sentences.
(13) (∃ nonstandard models of Th(N)) The structure 〈N; ·,+〉 is elementarily equivalent

to a structure with infinitely large elements (in fact, infinitely large prime numbers).
(14) There are 2ℵ0 nonisomorphic countable structures elementarily equivalent to 〈N; ·,+〉.
(15) The class of well-ordered sets is not elementary.
(16) Every partial order can be extended to a linear order.
(17) The class of connected graphs is not elementary.
(18) There is no first-order formula γ(x, y) in the language of graphs that defines the

relation “there is a path from x to y”.
(19) The class of acyclic graphs is elementary, but not finitely axiomatizable.
(20) (Erdös) A graph is k-colorable iff each finite subgraph is k-colorable.
(21) (Kőnig’s Lemma) Any infinite, finitely branching tree has an infinite path.


