Why the "Compactness" Theorem? (Where is the topological space?)

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$

A topological space is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$)

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets")

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying $\emptyset, X \in \mathcal{T}$.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying $\emptyset, X \in \mathcal{T}$.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying $\emptyset, X \in \mathcal{T}$.

2 \mathcal{T} is closed under the operation of finite intersection.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying $\emptyset, X \in \mathcal{T}$.

2 \mathcal{T} is closed under the operation of finite intersection.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A base (or basis) for the topology \mathcal{T} is a subset $\mathcal{B} \subseteq \mathcal{T}$

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A **base** (or basis) for the topology \mathcal{T} is a subset $\mathcal{B} \subseteq \mathcal{T}$ such that the set \mathcal{T} is the closure of \mathcal{B} under arbitrary union.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A **base (or basis)** for the topology \mathcal{T} is a subset $\mathcal{B} \subseteq \mathcal{T}$ such that the set \mathcal{T} is the closure of \mathcal{B} under arbitrary union.

A subset $C \subseteq X$ is **closed** if its complement is open.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A **base** (or basis) for the topology \mathcal{T} is a subset $\mathcal{B} \subseteq \mathcal{T}$ such that the set \mathcal{T} is the closure of \mathcal{B} under arbitrary union.

A subset $C \subseteq X$ is **closed** if its complement is open.

A subset $D \subseteq X$ is **clopen** if it is closed and open.

A **topological space** is a structure of the form $\langle X; \mathcal{T} \rangle$ (= $\langle \text{set}; \text{topology} \rangle$) where $\mathcal{T} \subseteq \mathcal{P}(X)$ is a set of subsets of X (called the "open sets") satisfying

- $0 \emptyset, X \in \mathcal{T}.$
- **2** \mathcal{T} is closed under the operation of finite intersection.
- § \mathcal{T} is closed under the operations of κ -ary union for all κ .

A **base** (or basis) for the topology \mathcal{T} is a subset $\mathcal{B} \subseteq \mathcal{T}$ such that the set \mathcal{T} is the closure of \mathcal{B} under arbitrary union.

A subset $C \subseteq X$ is **closed** if its complement is open.

A subset $D \subseteq X$ is **clopen** if it is closed and open.

The lattice $L=\langle \mathcal{T};\cap,\cup\rangle$ of open sets of a topological space

• is a complete lattice,

The lattice $L=\langle \mathcal{T};\cap,\cup\rangle$ of open sets of a topological space

• is a complete lattice,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- has the property that,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- has the property that,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element $M \in L$ such that $U \leq M$ and $V \not\leq M$.

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element $M \in L$ such that $U \leq M$ and $V \nleq M$. Choose any $p \in V - U$.

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M. Choose any p ∈ V − U. Let M = X − {p}.</p>

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M. Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M,

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- has the property that, if U < V in L, then there is a "meet-prime" element $M \in L$ such that $U \leq M$ and $V \not\leq M$. Choose any $p \in V - U$. Let $M = X - \overline{\{p\}}$. $U \subseteq M$, $V \not\subseteq M$.

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M.
 Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊈ M.

Any lattice satisfying the first two conditions is called a frame.

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M. Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊈ M.

Any lattice satisfying the first two conditions is called a **frame**. If a frame also satisfies the third condition, then it is called a **spatial frame**.

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M. Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊆ M.</p>

Any lattice satisfying the first two conditions is called a **frame**. If a frame also satisfies the third condition, then it is called a **spatial frame**. The meet-prime elements of a frame are called its **points**.

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M.
 Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊈ M.

Any lattice satisfying the first two conditions is called a **frame**. If a frame also satisfies the third condition, then it is called a **spatial frame**. The meet-prime elements of a frame are called its **points**. Any spatial frame defines a topology on its set of points.

Theorem.

Pointless Topology

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M.
 Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊈ M.

Any lattice satisfying the first two conditions is called a **frame**. If a frame also satisfies the third condition, then it is called a **spatial frame**. The meet-prime elements of a frame are called its **points**. Any spatial frame defines a topology on its set of points.

Theorem. If L is the lattice of closed subsets of an algebraic closure operator,

Pointless Topology

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M. Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊈ M.

Any lattice satisfying the first two conditions is called a **frame**. If a frame also satisfies the third condition, then it is called a **spatial frame**. The meet-prime elements of a frame are called its **points**. Any spatial frame defines a topology on its set of points.

Theorem. If L is the lattice of closed subsets of an algebraic closure operator, then L is a spatial frame if and only if the 3rd condition above holds.

Pointless Topology

The lattice $L = \langle \mathcal{T}; \cap, \cup \rangle$ of open sets of a topological space

- is a complete lattice,
- **2** satisfies the infinite distributive law $U \cap (\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (U \cap V_i)$,
- So has the property that, if U < V in L, then there is a "meet-prime" element M ∈ L such that U ≤ M and V ≤ M. Choose any p ∈ V − U. Let M = X − {p}. U ⊆ M, V ⊆ M.

Any lattice satisfying the first two conditions is called a **frame**. If a frame also satisfies the third condition, then it is called a **spatial frame**. The meet-prime elements of a frame are called its **points**. Any spatial frame defines a topology on its set of points.

Theorem. If L is the lattice of closed subsets of an algebraic closure operator, then L is a spatial frame if and only if the 3rd condition above holds. (Every element of L is the meet of meet-prime elements.)

Let L be the lattice of theories in a given signature.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L,

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L, and $\sigma \in V - U$,

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp\perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L, and $\sigma \in V - U$, then there is a complete consistent theory M extending $U \cup \{\neg\sigma\}$.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L, and $\sigma \in V - U$, then there is a complete consistent theory M extending $U \cup \{\neg \sigma\}$. Necessarily $U \leq M$ and $V \nleq M$. Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L, and $\sigma \in V - U$, then there is a complete consistent theory M extending $U \cup \{\neg \sigma\}$. Necessarily $U \leq M$ and $V \nleq M$.

Altogether this means that the lattice of theories is isomorphic to the lattice of open sets of a topological space whose points are the complete consistent theories.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L, and $\sigma \in V - U$, then there is a complete consistent theory M extending $U \cup \{\neg \sigma\}$. Necessarily $U \leq M$ and $V \nleq M$.

Altogether this means that the lattice of theories is isomorphic to the lattice of open sets of a topological space whose points are the complete consistent theories. The open set corresponding to a theory T contains a point corresponding to a complete theory M if and only if $T \not\subseteq M$.

Let L be the lattice of theories in a given signature. L is the lattice of closed subsets of sentences of a closure operator $cl(\Sigma) = \Sigma^{\perp \perp}$. The bottom element of L is $Th(\top)$, the theory of sentences true in all models. The top element of L is $Th(\perp)$, the theory of all sentences. The Completeness Theorem guarantees that this closure operator is an algebraic closure operator. The meet-prime elements of L are the complete consistent theories. If U < V in L, and $\sigma \in V - U$, then there is a complete consistent theory M extending $U \cup \{\neg \sigma\}$. Necessarily $U \leq M$ and $V \nleq M$.

Altogether this means that the lattice of theories is isomorphic to the lattice of open sets of a topological space whose points are the complete consistent theories. The open set corresponding to a theory T contains a point corresponding to a complete theory M if and only if $T \not\subseteq M$.

The open sets of the form O_{σ} corresponding to the finitely axiomatizable theories of the form $\text{Th}(\sigma)$ form a basis for this topology.

 (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology.

 (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology.

(compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.

- (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.
- **2** (Hausdorffness) Assume that M, N are distinct points.

- (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.
- **2** (Hausdorffness) Assume that M, N are distinct points.

- (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.
- (Hausdorffness) Assume that M, N are distinct points. There must be a sentence σ ∈ M − N.

- (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.
- (Hausdorffness) Assume that M, N are distinct points. There must be a sentence σ ∈ M − N. Since M and N are complete and consistent, ¬σ ∈ N − M.

- (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.
- (Hausdorffness) Assume that M, N are distinct points. There must be a sentence σ ∈ M − N. Since M and N are complete and consistent, ¬σ ∈ N − M. The opens O_σ and O_{¬σ} corresponding to Th(σ) and Th(¬σ) are complementary and separate M and N.

- (compactness) The Completeness Theorem suffices to prove that a finitely axiomatizable theory corresponds to a compact open subset of the topology. The largest theory Th(⊥) is finitely axiomatizable, so the space of theories is compact.
- (Hausdorffness) Assume that M, N are distinct points. There must be a sentence σ ∈ M − N. Since M and N are complete and consistent, ¬σ ∈ N − M. The opens O_σ and O_{¬σ} corresponding to Th(σ) and Th(¬σ) are complementary and separate M and N.
- (zero-dimensionality) The space of complete theories has a basis of clopen sets, namely the set B = {O_σ | σ a sentence} of clopen sets corresponding to finitely axiomatizable theories.

Let T_n be the theory of some (any) *n*-element set, n = 1, 2, 3, ...

Let T_n be the theory of some (any) *n*-element set, n = 1, 2, 3, ...Let T_{∞} be the theory of some (any) infinite set.

• $T_n, n = 1, 2, 3, ...,$ and T_∞ are distinct, complete theories

Let T_n be the theory of some (any) *n*-element set, n = 1, 2, 3, ...Let T_{∞} be the theory of some (any) infinite set.

• $T_n, n = 1, 2, 3, ...,$ and T_∞ are distinct, complete theories

Let T_n be the theory of some (any) *n*-element set, n = 1, 2, 3, ...Let T_{∞} be the theory of some (any) infinite set.

• T_n , n = 1, 2, 3, ..., and T_{∞} are distinct, complete theories and they are the only complete theories in this language.

- T_n , n = 1, 2, 3, ..., and T_{∞} are distinct, complete theories and they are the only complete theories in this language.
- **2** T_n , n = 1, 2, 3, ... are finitely axiomatizable,

- T_n , n = 1, 2, 3, ..., and T_{∞} are distinct, complete theories and they are the only complete theories in this language.
- **2** T_n , n = 1, 2, 3, ... are finitely axiomatizable,

- $T_n, n = 1, 2, 3, ...,$ and T_{∞} are distinct, complete theories and they are the only complete theories in this language.
- T_n , n = 1, 2, 3, ... are finitely axiomatizable, while T_{∞} is axiomatizable but not finitely axiomatizable.

- T_n, n = 1, 2, 3, ..., and T_∞ are distinct, complete theories and they are the only complete theories in this language.
- T_n , n = 1, 2, 3, ... are finitely axiomatizable, while T_{∞} is axiomatizable but not finitely axiomatizable.
- (a) Any sentence belonging to T_{∞} also belongs to T_n for all but finitely many n.

- T_n, n = 1, 2, 3, ..., and T_∞ are distinct, complete theories and they are the only complete theories in this language.
- T_n , n = 1, 2, 3, ... are finitely axiomatizable, while T_{∞} is axiomatizable but not finitely axiomatizable.
- (a) Any sentence belonging to T_{∞} also belongs to T_n for all but finitely many n.

- $T_n, n = 1, 2, 3, ...,$ and T_{∞} are distinct, complete theories and they are the only complete theories in this language.
- T_n , n = 1, 2, 3, ... are finitely axiomatizable, while T_{∞} is axiomatizable but not finitely axiomatizable.
- Solution Any sentence belonging to T_∞ also belongs to T_n for all but finitely many n.