
Why the “Compactness” Theorem?
(Where is the topological space?)
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Topology

A topological space is a structure of the form ⟨X; T ⟩ ( = ⟨set; topology⟩)
where T ⊆ P(X) is a set of subsets of X (called the “open sets”) satisfying

1 ∅, X ∈ T .
2 T is closed under the operation of finite intersection.
3 T is closed under the operations of κ-ary union for all κ.

A base (or basis) for the topology T is a subset B ⊆ T such that the set T is
the closure of B under arbitrary union.

A subset C ⊆ X is closed if its complement is open.

A subset D ⊆ X is clopen if it is closed and open.
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Pointless Topology

The lattice L = ⟨T ; ∩, ∪⟩ of open sets of a topological space

1 is a complete lattice,
2 satisfies the infinite distributive law U ∩ (

⋃
i∈I Vi) =

⋃
i∈I(U ∩ Vi),

3 has the property that, if U < V in L, then there is a “meet-prime”
element M ∈ L such that U ≤ M and V ̸≤ M .
Choose any p ∈ V − U . Let M = X − {p}. U ⊆ M , V ̸⊆ M .

Any lattice satisfying the first two conditions is called a frame. If a frame also
satisfies the third condition, then it is called a spatial frame. The meet-prime
elements of a frame are called its points. Any spatial frame defines a topology
on its set of points.

Theorem. If L is the lattice of closed subsets of an algebraic closure operator,
then L is a spatial frame if and only if the 3rd condition above holds. (Every
element of L is the meet of meet-prime elements.)
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The lattice of theories in a given signature is a spatial frame

Let L be the lattice of theories in a given signature. L is the lattice of closed
subsets of sentences of a closure operator cl(Σ) = Σ⊥⊥. The bottom element
of L is Th(⊤), the theory of sentences true in all models. The top element of
L is Th(⊥), the theory of all sentences. The Completeness Theorem
guarantees that this closure operator is an algebraic closure operator. The
meet-prime elements of L are the complete consistent theories. If U < V in
L, and σ ∈ V − U , then there is a complete consistent theory M extending
U ∪ {¬σ}. Necessarily U ≤ M and V ̸≤ M .

Altogether this means that the lattice of theories is isomorphic to the lattice of
open sets of a topological space whose points are the complete consistent
theories.The open set corresponding to a theory T contains a point
corresponding to a complete theory M if and only if T ̸⊆ M .

The open sets of the form Oσ corresponding to the finitely axiomatizable
theories of the form Th(σ) form a basis for this topology.
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The space of complete theories in a given signature is
compact, Hausdorff, and zero-dimensional

1 (compactness) The Completeness Theorem suffices to prove that a
finitely axiomatizable theory corresponds to a compact open subset of
the topology. The largest theory Th(⊥) is finitely axiomatizable, so the
space of theories is compact.

2 (Hausdorffness) Assume that M, N are distinct points. There must be a
sentence σ ∈ M − N . Since M and N are complete and consistent,
¬σ ∈ N − M . The opens Oσ and O¬σ corresponding to Th(σ) and
Th(¬σ) are complementary and separate M and N .

3 (zero-dimensionality) The space of complete theories has a basis of
clopen sets, namely the set B = {Oσ | σ a sentence} of clopen sets
corresponding to finitely axiomatizable theories.
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Example: The space of complete theories in the empty
signature is the 1-point compactification of a countably
infinite discrete space

Let Tn be the theory of some (any) n-element set, n = 1, 2, 3, . . ..
Let T∞ be the theory of some (any) infinite set.

1 Tn, n = 1, 2, 3, . . ., and T∞ are distinct, complete theories and they are
the only complete theories in this language.

2 Tn, n = 1, 2, 3, . . . are finitely axiomatizable, while T∞ is axiomatizable
but not finitely axiomatizable.

3 Any sentence belonging to T∞ also belongs to Tn for all but finitely
many n.

u u u u u u u . . . uT1 T2 T3 T4 T5 T6 T7 T∞

Why the “Compactness” Theorem? 6 / 6
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