ω -categorical structures

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question:

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical?

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ .

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations. (Assume T is ω -categorical.)

• T has countably many

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations. (Assume T is ω -categorical.)

• T has countably many

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations. (Assume T is ω -categorical.)

• T has countably many (= 1)

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations. (Assume T is ω -categorical.)

• T has countably many (= 1) isomorphism types of countable models,

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations. (Assume T is ω -categorical.)

T has countably many (= 1) isomorphism types of countable models, so T is "small".

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

Immediate observations. (Assume T is ω -categorical.)

• T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- **2** T has a countable atomic model and a countable ω -saturated model,

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- **2** T has a countable atomic model and a countable ω -saturated model,

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- T has a countable atomic model and a countable ω -saturated model, which must be isomorphic.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- T has a countable atomic model and a countable ω -saturated model, which must be isomorphic.
- Solution Every type in $S_n(T)$ is isolated.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- T has a countable atomic model and a countable ω -saturated model, which must be isomorphic.
- Solution Every type in $S_n(T)$ is isolated.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- T has a countable atomic model and a countable ω -saturated model, which must be isomorphic.
- Solution Every type in $S_n(T)$ is isolated. Hence $S_n(T)$ is finite for all n.

Throughout these slides, T will be a complete theory in a countable language which has infinite models.

We are interested in the question: what can be said about T (and its models) if T is ω -categorical? (Synonym: \aleph_0 -categorical.)

Recall that a theory is κ -categorical if it has one isomorphism type of model of size κ . A structure is κ -categorical if its theory is.

- T has countably many (= 1) isomorphism types of countable models, so T is "small". $(|S_n(T)| \leq \aleph_0 \text{ for each } n.)$
- T has a countable atomic model and a countable ω -saturated model, which must be isomorphic.
- Solution Every type in $S_n(T)$ is isolated. Hence $S_n(T)$ is finite for all n. (Discreteness+compactness)

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

1 T is ω -categorical.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

1 T is ω -categorical.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

The first three conditions are equivalent.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

The first three conditions are equivalent. From the previous slide, we have
Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

The first three conditions are equivalent. From the previous slide, we have • $(1) \Rightarrow (3)$ (every).

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

The first three conditions are equivalent. From the previous slide, we have • $(1) \Rightarrow (3)$ (every).

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- $(1) \Rightarrow (3)$ (every).
- $(3)(\text{some}) \Rightarrow (2).$

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- $(1) \Rightarrow (3)$ (every).
- $(3)(\text{some}) \Rightarrow (2).$

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- $(1) \Rightarrow (3)$ (every).
- $(3)(\text{some}) \Rightarrow (2).$
- $(2) \Rightarrow$ all countable models are atomic

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- $(1) \Rightarrow (3)$ (every).
- $(3)(\text{some}) \Rightarrow (2).$
- $(2) \Rightarrow$ all countable models are atomic

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- $(1) \Rightarrow (3)$ (every).
- $(3)(\text{some}) \Rightarrow (2).$
- $(2) \Rightarrow$ all countable models are atomic $\Rightarrow (1)$.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- T is ω -categorical.
- **2** $S_n(T)$ is finite for every n.
- Solution Every (or some) countable model of T is both atomic and ω -saturated.
- Every (or some) countable model of T has an "oligomorphic" automorphism group.

- $(1) \Rightarrow (3)$ (every).
- $(3)(\text{some}) \Rightarrow (2).$
- $(2) \Rightarrow$ all countable models are atomic $\Rightarrow (1)$.

Oligo- is a Greek prefix meaning "few".

Oligo- is a Greek prefix meaning "few".

Oligo- is a Greek prefix meaning "few". If a group G acts on a set X,

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n.

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n.

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example.

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X.

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X.

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X. (Describe the orbits of G on X, X^2, X^3 , ETC.)

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X. (Describe the orbits of G on X, X^2, X^3 , ETC.) What happens if you replace Sym(X) by its subgroup $\text{Sym}_{fin}(X)$ of permutations of finite support?

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X. (Describe the orbits of G on X, X^2, X^3 , ETC.) What happens if you replace Sym(X) by its subgroup $\text{Sym}_{fin}(X)$ of permutations of finite support?

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X. (Describe the orbits of G on X, X^2, X^3 , ETC.) What happens if you replace Sym(X) by its subgroup $\text{Sym}_{fin}(X)$ of permutations of finite support? **Next simplest example.**

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X. (Describe the orbits of G on X, X^2, X^3 , ETC.) What happens if you replace Sym(X) by its subgroup $\text{Sym}_{fin}(X)$ of permutations of finite support? Next simplest example. Let G = Aut(V) where V is an ω -dimensional vector space over a finite field \mathbb{F} .

Oligo- is a Greek prefix meaning "few".

If a group G acts on a set X, then it acts "diagonally" on X^n for any n. Diagonal action means, if $g \in G$ and $(x_1, \ldots, x_n) \in X^n$, then

 $g \cdot (x_1, \ldots, x_n)$ is defined to be $(g \cdot x_1, \ldots, g \cdot x_n)$.

The action of G on X is **oligomorphic** if the number of G-orbits of X^n is finite for every n. ("Few" orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the group of all permutations of the set X. G acts oligomorphically on X. (Describe the orbits of G on X, X^2, X^3 , ETC.) What happens if you replace Sym(X) by its subgroup $\text{Sym}_{fin}(X)$ of permutations of finite support? Next simplest example. Let G = Aut(V) where V is an ω -dimensional vector space over a finite field \mathbb{F} . G acts oligomorphically on V.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

(2) $S_n(T)$ is finite for every n.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

(2) $S_n(T)$ is finite for every n.

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

• $(2) \Rightarrow (4)$ (every):

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

• $(2) \Rightarrow (4)$ (every):
Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

• $(2) \Rightarrow (4)$ (every): Assume that **M** is any countable model of *T*.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

(2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

 (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M).

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

 (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite,

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

Proof.

 (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- $(4)(\text{some}) \Rightarrow (2)$:

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- $(4)(\text{some}) \Rightarrow (2)$:

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- (4)(some) ⇒ (2): Let M be a countable model of T that has an oligomorphic automorphism group.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- (4)(some) ⇒ (2): Let M be a countable model of T that has an oligomorphic automorphism group. M can realize only finitely many n-types for any n,

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- (4)(some) ⇒ (2): Let M be a countable model of T that has an oligomorphic automorphism group. M can realize only finitely many n-types for any n, yet M realizes a dense set of n-types,

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- (4)(some) ⇒ (2): Let M be a countable model of T that has an oligomorphic automorphism group. M can realize only finitely many n-types for any n, yet M realizes a dense set of n-types, so S_n(T) is finite for every n.

Theorem. Let T be a complete theory in a countable language which has infinite models. TFAE

- (2) $S_n(T)$ is finite for every n.
- (4) Every (or some) countable model of T has an oligomorphic automorphism group.

- (2) ⇒ (4)(every): Assume that M is any countable model of T. M must be atomic. By strong ω-homogeneity, any two tuples in Mⁿ have the same type iff they belong to the same orbit of Aut(M). Since S_n(T) is finite, the action of Aut(M) is oligomorphic.
- (4)(some) ⇒ (2): Let M be a countable model of T that has an oligomorphic automorphism group. M can realize only finitely many n-types for any n, yet M realizes a dense set of n-types, so S_n(T) is finite for every n. □

Let T be a complete theory in a countable language which has infinite models.

Let T be a complete theory in a countable language which has infinite models. Each of the following statements about T is equivalent to the statement that T is ω -categorical.

 \bigcirc T has a countable model that is both atomic and saturated.

Let T be a complete theory in a countable language which has infinite models. Each of the following statements about T is equivalent to the statement that T is ω -categorical.

 \bigcirc T has a countable model that is both atomic and saturated.

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.
- For each natural number n, there are only finitely many n-variable formulas up to T-equivalence.

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.
- For each natural number n, there are only finitely many n-variable formulas up to T-equivalence.

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.
- So For each natural number n, there are only finitely many n-variable formulas up to T-equivalence. Here we say that α(x) and β(x) are T-equivalent

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.
- So For each natural number n, there are only finitely many n-variable formulas up to T-equivalence. Here we say that α(x) and β(x) are T-equivalent (or equivalent modulo T)

- \bigcirc T has a countable model that is both atomic and saturated.
- 2 Every model of T realizes only isolated types.
- So For each natural number n, there are only finitely many n-variable formulas up to T-equivalence. Here we say that α(x) and β(x) are T-equivalent (or equivalent modulo T) if

$$T \models (\forall \mathbf{x})(\alpha(\mathbf{x}) \leftrightarrow \beta(\mathbf{x}))$$

Let T be a complete theory in a countable language which has infinite models. Each of the following statements about T is equivalent to the statement that T is ω -categorical.

- \bigcirc T has a countable model that is both atomic and saturated.
- **2** Every model of T realizes only isolated types.
- So For each natural number n, there are only finitely many n-variable formulas up to T-equivalence. Here we say that α(x) and β(x) are T-equivalent (or equivalent modulo T) if

$$T \models (\forall \mathbf{x})(\alpha(\mathbf{x}) \leftrightarrow \beta(\mathbf{x}))$$

• T has a model M such that, for every n, M^n has finitely many 0-definable subsets.

Example.

Example. Let's recall the definition of the random graph.

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$.

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$. Decide whether the graph to be constructed has an edge between $i, j \in V$ by flipping a coin.

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$. Decide whether the graph to be constructed has an edge between $i, j \in V$ by flipping a coin. The graph so constructed will "almost surely" (= "with probability 1") satisfy the following first-order properties:

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$. Decide whether the graph to be constructed has an edge between $i, j \in V$ by flipping a coin. The graph so constructed will "almost surely" (= "with probability 1") satisfy the following first-order properties:

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$. Decide whether the graph to be constructed has an edge between $i, j \in V$ by flipping a coin. The graph so constructed will "almost surely" (= "with probability 1") satisfy the following first-order properties:

P(m,n). Whenever $X, Y \subseteq V$ are disjoint subsets with |X| = m and |Y| = n, there is a $z \in V - (X \cup Y)$ that is adjacent to every vertex in X and not adjacent to any vertex in Y.

A "q.f. type extension" property

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$. Decide whether the graph to be constructed has an edge between $i, j \in V$ by flipping a coin. The graph so constructed will "almost surely" (= "with probability 1") satisfy the following first-order properties:

P(m,n). Whenever $X, Y \subseteq V$ are disjoint subsets with |X| = m and |Y| = n, there is a $z \in V - (X \cup Y)$ that is adjacent to every vertex in X and not adjacent to any vertex in Y.

A "q.f. type extension" property

The theory axiomatized by $\{P(m,n) \mid m, n \in \omega\}$ is complete and ω -categorical.

Example. Let's recall the definition of the random graph. This is a graph with vertex set $V = \omega$. Decide whether the graph to be constructed has an edge between $i, j \in V$ by flipping a coin. The graph so constructed will "almost surely" (= "with probability 1") satisfy the following first-order properties:

P(m,n). Whenever $X, Y \subseteq V$ are disjoint subsets with |X| = m and |Y| = n, there is a $z \in V - (X \cup Y)$ that is adjacent to every vertex in X and not adjacent to any vertex in Y.

A "q.f. type extension" property

The theory axiomatized by $\{P(m,n) \mid m, n \in \omega\}$ is complete and ω -categorical. Its unique countable model is called the **random graph**.

Comments
• The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.

• The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- Hence the theory has q.e.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- Hence the theory has q.e.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- 2 Hence the theory has q.e.
- Hence the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- 2 Hence the theory has q.e.
- Hence the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- e Hence the theory has q.e.
- Hence the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v and the duplications in coordinate values.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- e Hence the theory has q.e.
- Hence the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v and the duplications in coordinate values. This is enough to show that S_n(T) is finite for every n.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- 2 Hence the theory has q.e.
- Some the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v and the duplications in coordinate values. This is enough to show that S_n(T) is finite for every n. This explains why the theory of the random graph is ω-categorical.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- 2 Hence the theory has q.e.
- Some the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v and the duplications in coordinate values. This is enough to show that S_n(T) is finite for every n. This explains why the theory of the random graph is ω-categorical.
- These arguments generalize to show that the theory of any countably infinite ultrahomogeneous structure in a finite relational language has q.e. and is ω -categorical.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- 2 Hence the theory has q.e.
- Some the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v and the duplications in coordinate values. This is enough to show that S_n(T) is finite for every n. This explains why the theory of the random graph is ω-categorical.
- These arguments generalize to show that the theory of any countably infinite ultrahomogeneous structure in a finite relational language has q.e. and is ω -categorical.

- The "q.f. type extension" axioms guarantee that the random graph is ultrahomogeneous.
- e Hence the theory has q.e.
- Some the elementary type of a tuple v is determined by the isomorphism type of the subgraph induced on the coordinate values of v and the duplications in coordinate values. This is enough to show that S_n(T) is finite for every n. This explains why the theory of the random graph is ω-categorical.
- These arguments generalize to show that the theory of any countably infinite ultrahomogeneous structure in a finite relational language has q.e. and is ω -categorical.
- § For ω -categorical structures, q.e. is equivalent to ultrahomogeneity.