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Countable categoricity

Throughout these slides, T will be a complete theory in a countable language
which has infinite models.

We are interested in the question: what can be said about T (and its models) if
T is ω-categorical? (Synonym: ℵ0-categorical.)

Recall that a theory is κ-categorical if it has one isomorphism type of model
of size κ. A structure is κ-categorical if its theory is.

Immediate observations. (Assume T is ω-categorical.)

1 T has countably many (= 1) isomorphism types of countable models, so
T is “small”. (|Sn(T )| ≤ ℵ0 for each n.)

2 T has a countable atomic model and a countable ω-saturated model,
which must be isomorphic.

3 Every type in Sn(T ) is isolated. Hence Sn(T ) is finite for all n.
(Discreteness+compactness)
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The theorems of Erwin Engeler, Czesław Ryll-Nardzewski,
and Lars Svenonius, 1959

Theorem. Let T be a complete theory in a countable language which has
infinite models. TFAE

1 T is ω-categorical.
2 Sn(T ) is finite for every n.
3 Every (or some) countable model of T is both atomic and ω-saturated.
4 Every (or some) countable model of T has an “oligomorphic”

automorphism group.

The first three conditions are equivalent. From the previous slide, we have

(1) ⇒ (3)(every).

(3)(some) ⇒ (2).

(2) ⇒ all countable models are atomic ⇒ (1).
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Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X ,

then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.

Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n.

(“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example.

Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X .

G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .

(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.)

What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example.

Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F.

G acts oligomorphically on V .

ω-categorical structures 4 / 8



Oligomorphic group actions

Oligo- is a Greek prefix meaning “few”.

If a group G acts on a set X , then it acts “diagonally” on Xn for any n.
Diagonal action means, if g ∈ G and (x1, . . . , xn) ∈ Xn, then

g · (x1, . . . , xn) is defined to be (g · x1, . . . , g · xn).

The action of G on X is oligomorphic if the number of G-orbits of Xn is
finite for every n. (“Few” orbits.)

Simplest example. Let X be an infinite set and let G = Sym(X) be the
group of all permutations of the set X . G acts oligomorphically on X .
(Describe the orbits of G on X, X2, X3, ETC.) What happens if you replace
Sym(X) by its subgroup Symfin(X) of permutations of finite support?

Next simplest example. Let G = Aut(V ) where V is an ω-dimensional
vector space over a finite field F. G acts oligomorphically on V .

ω-categorical structures 4 / 8



Svenonius’s “automorphism version” of the theorem

Theorem. Let T be a complete theory in a countable language which has
infinite models. TFAE

(2) Sn(T ) is finite for every n.

(4) Every (or some) countable model of T has an oligomorphic
automorphism group.

Proof.

(2) ⇒ (4)(every): Assume that M is any countable model of T . M must
be atomic. By strong ω-homogeneity, any two tuples in Mn have the
same type iff they belong to the same orbit of Aut(M). Since Sn(T ) is
finite, the action of Aut(M) is oligomorphic.

(4)(some) ⇒ (2): Let M be a countable model of T that has an
oligomorphic automorphism group. M can realize only finitely many
n-types for any n, yet M realizes a dense set of n-types, so Sn(T ) is
finite for every n. 2
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Other characterizations of ω-categoricity

Let T be a complete theory in a countable language which has infinite models.
Each of the following statements about T is equivalent to the statement that T
is ω-categorical.

1 T has a countable model that is both atomic and saturated.

2 Every model of T realizes only isolated types.

3 For each natural number n, there are only finitely many n-variable
formulas up to T -equivalence. Here we say that α(x) and β(x) are
T -equivalent (or equivalent modulo T ) if

T |= (∀x)(α(x) ↔ β(x))

4 T has a model M such that, for every n, Mn has finitely many
0-definable subsets.
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The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example.

Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.

This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω.

Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin.

The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical.

Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



The random graph is an ω-categorical structure

Example. Let’s recall the definition of the random graph.
This is a graph with vertex set V = ω. Decide whether the graph to be
constructed has an edge between i, j ∈ V by flipping a coin. The graph so
constructed will “almost surely” ( = “with probability 1”) satisfy the
following first-order properties:

P(m,n). Whenever X, Y ⊆ V are disjoint subsets with |X| = m and |Y | = n,
there is a z ∈ V − (X ∪ Y ) that is adjacent to every vertex in X and not
adjacent to any vertex in Y .

A “q.f. type extension” property

The theory axiomatized by {P (m, n) | m, n ∈ ω} is complete and
ω-categorical. Its unique countable model is called the random graph.

ω-categorical structures 7 / 8



Comments

1 The “q.f. type extension” axioms guarantee that the random graph is
ultrahomogeneous.

2 Hence the theory has q.e.
3 Hence the elementary type of a tuple v is determined by the

isomorphism type of the subgraph induced on the coordinate values of v
and the duplications in coordinate values. This is enough to show that
Sn(T ) is finite for every n. This explains why the theory of the random
graph is ω-categorical.

4 These arguments generalize to show that the theory of any countably
infinite ultrahomogeneous structure in a finite relational language has
q.e. and is ω-categorical.

5 For ω-categorical structures, q.e. is equivalent to ultrahomogeneity.
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