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Recall

We have been trying to determine the extent to which a structure is
determined by its language.

So far we have learned:

(1) A finite structure is determined up to isomorphism by its complete
first-order theory. (HW)

(2) An infinite structure can never be determined up to isomorphism by its
complete first-order theory. (Löwenheim-Skolem Theorem)

(3) Some infinite structures may be determined up to isomorphism by its
cardinality and its theory. (Concept of κ-categoricity)

We are in the process of investigating how:

(4) The variety of isomorphism types of models of a complete theory T is
determined by the spaces Sn(T ).
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Models realizing few types

Throughout these slides, T will be a complete theory in a countable language
which has infinite models.
Definition. Call a model of T atomic if it realizes only isolated types.

Theorem of Atomic Models. Let T be a complete theory in a countable
language. TFAE.

1 T has a countable atomic model,
2 The isolated types in Sn(T ) are dense for all n ∈ ω.

Remarks.

1 Hence, it is common to define a complete theory in a countable language
to be atomic if its isolated types are dense.

2 Countable atomic models are unique up to isomorphism, and are
elementarily embeddable into every other model.

3 Henkin models are atomic.
4 Lots of other theories have atomic models. (Any ω-categorical theory,

Any T satisfying |Sn(T )| < 2ℵ0 for all n, T = Th(⟨ω; +, ·⟩).)
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Proof of the Theorem of Atomic Models

Statement.
T has a (countable) atomic model ⇔ isolated types are dense in Sn(T ), ∀n.

(⇒:) Assume T has an atomic model, A. A realizes only isolated types in
Sn(T ), because A is atomic. But A realizes a dense subset of Sn(T ), since T
is complete. Hence isolated types are dense in Sn(T ).

(⇐:) Now assume that isolated types, e.g. p = ⟨φp(x)⟩, are dense in Sn(T )
for every n. For a given n, define (in order to omit!)

Σn(x) = {¬φp(x) | p ∈ Sn(T ) isolated by φp}.

If Σ(x) is not consistent with T , then it is omitted in all models of T . ©
If Σ(x) is consistent and supported by ψ(x), then Oψ(x) would be nonempty,
clopen, but contain no isolated type, contradicting density. §
Else Σn(x) is an unsupported partial type for each n. There are countably
many Σn. By the Omitting Types Theorem, T has a countable model A
omitting all Σn. A is countable and atomic. 2
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(⇐:) Now assume that isolated types, e.g. p = ⟨φp(x)⟩, are dense in Sn(T )
for every n. For a given n, define (in order to omit!)

Σn(x) = {¬φp(x) | p ∈ Sn(T ) isolated by φp}.

If Σ(x) is not consistent with T , then it is omitted in all models of T . ©
If Σ(x) is consistent and supported by ψ(x), then Oψ(x) would be nonempty,
clopen, but contain no isolated type, contradicting density. §
Else Σn(x) is an unsupported partial type for each n. There are countably
many Σn. By the Omitting Types Theorem, T has a countable model A
omitting all Σn. A is countable and atomic.
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A non-atomic theory

Example.
The theory T of countably many independent unary relations has these
properties:

1 Axiomatized by all sentences

∃x(Ri1(x) ∧ · · · ∧Rim(x) ∧ ¬Rj1(x) ∧ · · · ∧ ¬Rjn(x)).

2 T is complete and has q.e.
3 Sn(T ) has no isolated points for any n.
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The word “atomic”

A Boolean algebra is called atomic if every nonzero element is above an
atom.

The Boolean algebra of clopen subsets of a Stone space is therefore atomic if
every clopen subset contains a singleton clopen subset. This is equivalent to
the property that isolated points are dense. Hence the theory T is atomic iff
the Boolean algebra associated to each Sn(T ) is atomic.

There is a nice sufficient condition for a Stone space to have isolated points
dense.

Thm. If S is a scattered Stone space, then its isolated points are dense.

Proof.(Contrapositive) Assume that C is a nonempty basic clopen subset of S
not containing any point isolated in S. Since C is open, it has no points
isolated in C. Since C is closed without isolated points, it is a nonempty
perfect subset of S. 2
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Uniqueness of atomic models

Thm. If T is a complete atomic theory in a countable language, then

1 Any two countable atomic models are isomorphic.
2 Any two tuples of the atomic model have the same type iff they differ by

an automorphism.
3 The unique countable model is “prime” (is elementarily embeddable in

any model of T ).

Proof. (1) Back and forth. (2) Back and forth. (3) Forth. 2
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An extension lemma

Lm. Let T be a complete theory. Let p ∈ Sn(T ) and q ∈ Sn+1(T ) be types
where p = q|n is the restriction of q to the first n variables. If p and q are both
isolated types, then

for any model M of T , any realization a of p in M can be extended
to a realization ab of q in M.

Proof. Assume that p and q are isolated by φp(x) and φq(x, xn+1). Then
(∃xn+1)φq(x, xn+1) ∈ q|n = p, so

T |= (∀x)(φp(x) → (∃xn+1)φq(x, xn+1)).

Hence any realization of p in any model of T can be extended to a realization
of q. 2
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Proof. Assume that p and q are isolated by φp(x) and φq(x, xn+1). Then
(∃xn+1)φq(x, xn+1) ∈ q|n = p, so

T |= (∀x)(φp(x) → (∃xn+1)φq(x, xn+1)).

Hence any realization of p in any model of T can be extended to a realization
of q. 2
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