Model Theory

Model theory

Model theory

Model theory is the study of the relationship between mathematical structures and the languages used to define these structures.

Model theory

Model theory is the study of the relationship between mathematical structures and the languages used to define these structures.

Chang-Keisler Equation (1973). model theory $=$ universal algebra + logic

Model theory

Model theory is the study of the relationship between mathematical structures and the languages used to define these structures.

Chang-Keisler Equation (1973). model theory $=$ universal algebra + logic
'universal algebra' is the general study of algebraic structures, so this equation indicates that Model Theory studies structures using logical formulas.

Model theory

Model theory is the study of the relationship between mathematical structures and the languages used to define these structures.

Chang-Keisler Equation (1973). model theory $=$ universal algebra + logic
'universal algebra' is the general study of algebraic structures, so this equation indicates that Model Theory studies structures using logical formulas.

Hodges' Slogan (1997). model theory = algebraic geometry - fields

Model theory

Model theory is the study of the relationship between mathematical structures and the languages used to define these structures.

Chang-Keisler Equation (1973). model theory $=$ universal algebra + logic
'universal algebra' is the general study of algebraic structures, so this equation indicates that Model Theory studies structures using logical formulas.

Hodges' Slogan (1997). model theory = algebraic geometry - fields
This slogan indicates that, while algebraic geometers may study curves, surfaces, etc, that are defined over a field, a model theorist studies arbitrary definable sets over arbitrary structures.

Examples

Examples

Structures.

Examples

Structures. (= universe; structural elements \rangle)

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:

$$
\left\langle G ; \cdot,^{-1}, 1\right\rangle .
$$

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.

Examples

Structures. (= 〈universe; structural elements〉)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:

Examples

Structures. (= 〈universe; structural elements〉)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$.

Examples

Structures. (= 〈universe; structural elements〉)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$. A structure with an underlying set V of vertices and a binary edge relation E.

Examples

Structures. (= 〈universe; structural elements〉)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$. A structure with an underlying set V of vertices and a binary edge relation E.
(3) Incidence Geometry:

Examples

Structures. (= 〈universe; structural elements〉)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$. A structure with an underlying set V of vertices and a binary edge relation E.
(3) Incidence Geometry:

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$. A structure with an underlying set V of vertices and a binary edge relation E.
(3) Incidence Geometry:
$\langle P, L ; I(p, \ell)\rangle$.

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$. A structure with an underlying set V of vertices and a binary edge relation E.
(3) Incidence Geometry:
$\langle P, L ; I(p, \ell)\rangle$. A structure with an underlying set P of points, another underlying set L of lines, and a binary relation of incidence between them.

Examples

Structures. (= 〈universe; structural elements \rangle)
(1) Group:
$\left\langle G ; \cdot,^{-1}, 1\right\rangle$. A structure with an underlying set of elements, a binary operation of multiplication, a unary operation of inverse, and a distinguished constant.
(2) Directed Graph:
$\langle V ; E(x, y)\rangle$. A structure with an underlying set V of vertices and a binary edge relation E.
(3) Incidence Geometry:
$\langle P, L ; I(p, \ell)\rangle$. A structure with an underlying set P of points, another underlying set L of lines, and a binary relation of incidence between them.

The first two examples are 1 -sorted structures, while the third is a 2 -sorted structure.

Examples

Examples

Sentences and formulas.

Examples

Sentences and formulas.
(1) (Groups)

Examples

Sentences and formulas.
(1) (Groups)

Examples

Sentences and formulas.

(1) (Groups)

$$
\sigma:(\forall x)(\forall y)(x y=y x)
$$

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)

$$
\sigma:(\forall x) E(x, x)
$$

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)

$$
\begin{aligned}
& \sigma:(\forall x) E(x, x) \\
& \varphi(x): \neg(\exists y) E(y, x)
\end{aligned}
$$

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)
$\sigma:(\forall x) E(x, x)$
$\varphi(x): \neg(\exists y) E(y, x)$
(3) (Geometries)

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)
$\sigma:(\forall x) E(x, x)$
$\varphi(x): \neg(\exists y) E(y, x)$
(3) (Geometries)

Examples

Sentences and formulas.

(1) (Groups)

$$
\begin{aligned}
& \sigma:(\forall x)(\forall y)(x y=y x) \\
& \varphi(x):(\forall y)(x y=y x)
\end{aligned}
$$

(2) (Graphs)
$\sigma:(\forall x) E(x, x)$
$\varphi(x): \neg(\exists y) E(y, x)$
(3) (Geometries)
$\sigma:(\forall p)(\forall q)((p \neq q) \rightarrow(\exists \ell)(I(p, \ell) \wedge I(q, \ell)))$

Examples

Sentences and formulas.

(1) (Groups)
$\sigma:(\forall x)(\forall y)(x y=y x)$
$\varphi(x):(\forall y)(x y=y x)$
(2) (Graphs)
$\sigma:(\forall x) E(x, x)$
$\varphi(x): \neg(\exists y) E(y, x)$
(3) (Geometries)
$\sigma:(\forall p)(\forall q)((p \neq q) \rightarrow(\exists \ell)(I(p, \ell) \wedge I(q, \ell)))$
$\varphi(p, q, r):$ (collinearity)

Examples

Sentences and formulas.

(1) (Groups)
$\sigma:(\forall x)(\forall y)(x y=y x)$
$\varphi(x):(\forall y)(x y=y x)$
(2) (Graphs)
$\sigma:(\forall x) E(x, x)$
$\varphi(x): \neg(\exists y) E(y, x)$
(3) (Geometries)
$\sigma:(\forall p)(\forall q)((p \neq q) \rightarrow(\exists \ell)(I(p, \ell) \wedge I(q, \ell)))$
$\varphi(p, q, r):$ (collinearity)

$$
(\exists \ell)(I(p, \ell) \wedge I(q, \ell) \wedge I(r, \ell))
$$

Abstract logic

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures,

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures, Σ is a class of sentences,

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures, Σ is a class of sentences, and \models is a relation from \mathcal{K} to Σ

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures, Σ is a class of sentences, and \models is a relation from \mathcal{K} to Σ indicating when a structure $\mathbf{A} \in \mathcal{K}$ satisfies a sentence $\sigma \in \Sigma$:

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures, Σ is a class of sentences, and \models is a relation from \mathcal{K} to Σ indicating when a structure $\mathbf{A} \in \mathcal{K}$ satisfies a sentence $\sigma \in \Sigma$: write $\mathbf{A} \models \sigma$ to indicate that \mathbf{A} satisfies σ.

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures, Σ is a class of sentences, and \models is a relation from \mathcal{K} to Σ indicating when a structure $\mathbf{A} \in \mathcal{K}$ satisfies a sentence $\sigma \in \Sigma$: write $\mathbf{A} \models \sigma$ to indicate that \mathbf{A} satisfies σ.

A structure that satisfies a sentence σ (or satisfies each sentence in some set of sentences T) is called a model of σ (or of T).

Abstract logic

An abstract logic is a triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is a class of structures, Σ is a class of sentences, and \models is a relation from \mathcal{K} to Σ indicating when a structure $\mathbf{A} \in \mathcal{K}$ satisfies a sentence $\sigma \in \Sigma$: write $\mathbf{A} \models \sigma$ to indicate that \mathbf{A} satisfies σ.

A structure that satisfies a sentence σ (or satisfies each sentence in some set of sentences T) is called a model of σ (or of T).

First-order model theory starts with an alphabet of symbols, and then explains how to generate and associated triple $(\mathcal{K}, \Sigma, \models)$ where \mathcal{K} is the class of all first-order structures in this alphabet, Σ is a class of all first-order sentences in this alphabet, and \models is a satisfaction relation.

