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Recall: M isac.t.m.,IP € M is a forcing order, G is a generic filter in P,
B € M is the Boolean completion of P, and M® is the collection of B-valued
sets.

Generic Model Theorem. With the notation as above, there is a transitive
model of ZFC, M [G], such that

Q@ M|[G] is the least transitive model of ZFC satisfying M < M[G] and
G € M[G], and
@ M|[G] and M have the same ordinals.
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How is M[G] constructed?

We want to define M[G] in terms of M® and G. Given z € M®, a

corresponding element of M[G] will be written 2.

Definition. (M [G])
0 o%=0,
Q@ 2% ={y“ | Fpe@)p <z}
Q@ M[G] = {z% |z e MB}.

M][G] is a transitive class in M.

If 2 € M, then & € M®, and an inductive proof shows that 2 = £ € M[G].

There is a “name for G” in M B, G. It is the B-valued function with domain B
defined by G/(41) = u for u € B. With this definition G = G% € M[G].
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(Independent of G)
Any Ag-formula has the same meaning in M and M [G]. In particular, the following
formulas define the same sets/classes in these models.

Pempty set (I)

Ptransitive ((E)

Pordinal (-'17 )

Psuccessor (l‘)

Pomega ()

Fact. Suppose that ©cadina () expresses that  is an initial ordinal. This formula is
not equivalent to a Ag-formula.

(Dependent on )
Theorem 14.29, Jech. For z; € MB

M[G] = p(z§,...,29) < [p(z1,...,2,)]* € G.
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Theorem 14.34, Jech. If P is a c.c.c. poset, then M and M [G] have the same
cardinals, and these have the same cofinalities.

Example. The forcing poset for f: wy — 2% has the c.c.c.

Corollary. If M is a c.t.m., P € M is the forcing poset of the Example, G is a
generic filter in P, then | JG € M[G] is a 1-1 function from ws into 2¢.
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