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What is M rGs?

Recall: M is a c.t.m., P P M is a forcing order, G is a generic filter in P,
B P M is the Boolean completion of P, and MB is the collection of B-valued
sets.

Generic Model Theorem. With the notation as above, there is a transitive
model of ZFC, M rGs, such that

1 M rGs is the least transitive model of ZFC satisfying M Ď M rGs and
G P M rGs, and

2 M rGs and M have the same ordinals.
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How is M rGs constructed?

We want to define M rGs in terms of MB and G. Given x P MB, a
corresponding element of M rGs will be written xG.

Definition. (M rGs)

1 HG “ H,
2 xG “ tyG | pDp P Gqrp ď xpyqsu,
3 M rGs “ txG | x P MBu.

M rGs is a transitive class in M .

If x P M , then x̂ P MB, and an inductive proof shows that x “ x̂G P M rGs.

There is a “name for G” in MB, 9G. It is the B-valued function with domain B
defined by 9Gpûq “ u for u P B. With this definition G “ 9GG P M rGs.
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What is true in M rGs?

(Depends on the choice of G!)

(Independent of G)
Any ∆0-formula has the same meaning in M and M rGs. In particular, the following
formulas define the same sets/classes in these models.

φempty setpxq

φtransitivepxq

φordinalpxq

φsuccessorpxq

φomegapxq

Fact. Suppose that φcardinalpxq expresses that x is an initial ordinal. This formula is
not equivalent to a ∆0-formula.

(Dependent on G)
Theorem 14.29, Jech. For xi P MB

M rGs |ù φpxG
1 , . . . , xG

n q ô Jφpx1, . . . , xnqKB P G.
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not equivalent to a ∆0-formula.

(Dependent on G)
Theorem 14.29, Jech. For xi P MB

M rGs |ù φpxG
1 , . . . , xG

n q ô Jφpx1, . . . , xnqKB P G.
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c.c.c forcing

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If P is a c.c.c. poset, then M and M rGs have the same
cardinals, and these have the same cofinalities.

Example. The forcing poset for f inj : ω2 Ñ 2ω has the c.c.c.

Corollary. If M is a c.t.m., P P M is the forcing poset of the Example, G is a
generic filter in P, then

Ť

G P M rGs is a 1-1 function from ω2 into 2ω.
Therefore CH fails in M rGs.
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