

Recall:

Recall: M is a c.t.m.,

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order,

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} ,

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} ,

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} , and $M^{\mathbb{B}}$ is the collection of \mathbb{B} -valued sets.

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} , and $M^{\mathbb{B}}$ is the collection of \mathbb{B} -valued sets.

Generic Model Theorem.

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} , and $M^{\mathbb{B}}$ is the collection of \mathbb{B} -valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, M[G], such that

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} , and $M^{\mathbb{B}}$ is the collection of \mathbb{B} -valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, M[G], such that

• M[G] is the least transitive model of ZFC satisfying $M \subseteq M[G]$ and $G \in M[G]$, and

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} , and $M^{\mathbb{B}}$ is the collection of \mathbb{B} -valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, M[G], such that

• M[G] is the least transitive model of ZFC satisfying $M \subseteq M[G]$ and $G \in M[G]$, and

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P} , $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P} , and $M^{\mathbb{B}}$ is the collection of \mathbb{B} -valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, M[G], such that

- M[G] is the least transitive model of ZFC satisfying $M \subseteq M[G]$ and $G \in M[G]$, and
- \bigcirc M[G] and M have the same ordinals.

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G.

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

$$\begin{aligned} & \ensuremath{\varnothing}^G = \ensuremath{\varnothing}, \\ & \ensuremath{\vartheta}^G = \{y^G \mid (\exists p \in G) [p \leqslant x(y)]\}, \\ & \ensuremath{\vartheta} M[G] = \{x^G \mid x \in M^{\mathbb{B}}\}. \end{aligned}$$

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

$$\begin{aligned} & \ensuremath{\varnothing}^G = \ensuremath{\varnothing}, \\ & \ensuremath{\vartheta}^G = \{y^G \mid (\exists p \in G) [p \leqslant x(y)]\}, \\ & \ensuremath{\vartheta} M[G] = \{x^G \mid x \in M^{\mathbb{B}}\}. \end{aligned}$$

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

Definition. (M[G])

$$\begin{aligned} & \ensuremath{\varnothing}^G = \ensuremath{\varnothing}, \\ & \ensuremath{\vartheta}^G = \{y^G \mid (\exists p \in G) [p \leqslant x(y)]\}, \\ & \ensuremath{\vartheta} M[G] = \{x^G \mid x \in M^{\mathbb{B}}\}. \end{aligned}$$

M[G] is a transitive class in M.

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

Definition. (M[G])

M[G] is a transitive class in M.

If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x = \hat{x}^G \in M[G]$.

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

Definition. (M[G])

M[G] is a transitive class in M.

If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x = \hat{x}^G \in M[G]$.

There is a "name for G" in $M^{\mathbb{B}}$, \dot{G} .

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

Definition. (M[G])

M[G] is a transitive class in M.

If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x = \hat{x}^G \in M[G]$.

There is a "name for G" in $M^{\mathbb{B}}$, \dot{G} . It is the \mathbb{B} -valued function with domain \mathbb{B} defined by $\dot{G}(\hat{u}) = u$ for $u \in \mathbb{B}$.

We want to define M[G] in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of M[G] will be written x^{G} .

Definition. (M[G])

M[G] is a transitive class in M.

If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x = \hat{x}^G \in M[G]$.

There is a "name for G" in $M^{\mathbb{B}}$, \dot{G} . It is the \mathbb{B} -valued function with domain \mathbb{B} defined by $\dot{G}(\hat{u}) = u$ for $u \in \mathbb{B}$. With this definition $G = \dot{G}^G \in M[G]$.

What is true in M[G]?

(Independent of G)

(Independent of G) Any Δ_0 -formula has the same meaning in M and M[G].

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

• $\varphi_{\text{empty set}}(x)$

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

• $\varphi_{\text{empty set}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

(Independent of G)

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

Fact.

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

Fact. Suppose that $\varphi_{cardinal}(x)$ expresses that x is an initial ordinal.

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

Fact. Suppose that $\varphi_{\text{cardinal}}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_0 -formula.

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

Fact. Suppose that $\varphi_{\text{cardinal}}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_0 -formula.

(Dependent on G)

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

Fact. Suppose that $\varphi_{\text{cardinal}}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_0 -formula.

(Dependent on G) **Theorem 14.29, Jech.**

What is true in M[G]?

(Independent of G)

Any Δ_0 -formula has the same meaning in M and M[G]. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text{empty set}}(x)$
- $\varphi_{\text{transitive}}(x)$
- $\varphi_{\text{ordinal}}(x)$
- $\varphi_{\text{successor}}(x)$
- $\varphi_{\text{omega}}(x)$

Fact. Suppose that $\varphi_{\text{cardinal}}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_0 -formula.

(Dependent on G) **Theorem 14.29, Jech.** For $x_i \in M^{\mathbb{B}}$

$$M[G] \models \varphi(x_1^G, \dots, x_n^G) \Leftrightarrow \llbracket \varphi(x_1, \dots, x_n) \rrbracket^{\mathbb{B}} \in G$$

Definition of c.c.c. goes here.

Definition of c.c.c. goes here.

Theorem 14.34, Jech.

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example.

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Corollary.

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Corollary. If M is a c.t.m.,

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Corollary. If *M* is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example,

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example, G is a generic filter in \mathbb{P} ,

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example, G is a generic filter in \mathbb{P} , then $\bigcup G \in M[G]$ is a 1-1 function from ω_2 into 2^{ω} .

Definition of c.c.c. goes here.

Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and M[G] have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text{inj}}: \omega_2 \to 2^{\omega}$ has the c.c.c.

Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example, G is a generic filter in \mathbb{P} , then $\bigcup G \in M[G]$ is a 1-1 function from ω_2 into 2^{ω} . Therefore CH fails in M[G].