$M[G]$

What is $M[G]$?

What is $M[G]$?

Recall:

What is $M[G]$?

Recall: M is a c.t.m.,

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order,

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P},

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P},

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P}, and $M^{\mathbb{B}}$ is the collection of \mathbb{B}-valued sets.

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P}, and $M^{\mathbb{B}}$ is the collection of \mathbb{B}-valued sets.

Generic Model Theorem.

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P}, and $M^{\mathbb{B}}$ is the collection of \mathbb{B}-valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, $M[G]$, such that

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P}, and $M^{\mathbb{B}}$ is the collection of \mathbb{B}-valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, $M[G]$, such that
(1) $M[G]$ is the least transitive model of ZFC satisfying $M \subseteq M[G]$ and $G \in M[G]$, and

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P}, and $M^{\mathbb{B}}$ is the collection of \mathbb{B}-valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, $M[G]$, such that
(1) $M[G]$ is the least transitive model of ZFC satisfying $M \subseteq M[G]$ and $G \in M[G]$, and

What is $M[G]$?

Recall: M is a c.t.m., $\mathbb{P} \in M$ is a forcing order, G is a generic filter in \mathbb{P}, $\mathbb{B} \in M$ is the Boolean completion of \mathbb{P}, and $M^{\mathbb{B}}$ is the collection of \mathbb{B}-valued sets.

Generic Model Theorem. With the notation as above, there is a transitive model of ZFC, $M[G]$, such that
(1) $M[G]$ is the least transitive model of ZFC satisfying $M \subseteq M[G]$ and $G \in M[G]$, and
(2) $M[G]$ and M have the same ordinals.

How is $M[G]$ constructed?

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.
$M[G]$ is a transitive class in M.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.
$M[G]$ is a transitive class in M.
If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x=\hat{x}^{G} \in M[G]$.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.
$M[G]$ is a transitive class in M.
If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x=\hat{x}^{G} \in M[G]$.
There is a "name for G " in $M^{\mathbb{B}}, \dot{G}$.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.
$M[G]$ is a transitive class in M.
If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x=\hat{x}^{G} \in M[G]$.
There is a "name for $G^{\prime \prime}$ " in $M^{\mathbb{B}}, \dot{G}$. It is the \mathbb{B}-valued function with domain \mathbb{B} defined by $\dot{G}(\hat{u})=u$ for $u \in \mathbb{B}$.

How is $M[G]$ constructed?

We want to define $M[G]$ in terms of $M^{\mathbb{B}}$ and G. Given $x \in M^{\mathbb{B}}$, a corresponding element of $M[G]$ will be written x^{G}.

Definition. $(M[G])$
(1) $\varnothing^{G}=\varnothing$,
(2) $x^{G}=\left\{y^{G} \mid(\exists p \in G)[p \leqslant x(y)]\right\}$,
(3) $M[G]=\left\{x^{G} \mid x \in M^{\mathbb{B}}\right\}$.
$M[G]$ is a transitive class in M.
If $x \in M$, then $\hat{x} \in M^{\mathbb{B}}$, and an inductive proof shows that $x=\hat{x}^{G} \in M[G]$.
There is a "name for $G^{\prime \prime}$ in $M^{\mathbb{B}}, \dot{G}$. It is the \mathbb{B}-valued function with domain \mathbb{B} defined by $\dot{G}(\hat{u})=u$ for $u \in \mathbb{B}$. With this definition $G=\dot{G}^{G} \in M[G]$.

What is true in $M[G]$?

What is true in $M[G]$? (Depends on the choice of $G!$)

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$.

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty }}$ set (x)

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty }}$ set (x)

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty }}$ set (x)
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

Fact.

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

Fact. Suppose that $\varphi_{\text {cardinal }}(x)$ expresses that x is an initial ordinal.

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

Fact. Suppose that $\varphi_{\text {cardinal }}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_{0}-formula.

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

Fact. Suppose that $\varphi_{\text {cardinal }}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_{0}-formula.
(Dependent on G)

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

Fact. Suppose that $\varphi_{\text {cardinal }}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_{0}-formula.
(Dependent on G)
Theorem 14.29, Jech.

What is true in $M[G]$?

What is true in $M[G]$? (Depends on the choice of $G!$)

(Independent of G)
Any Δ_{0}-formula has the same meaning in M and $M[G]$. In particular, the following formulas define the same sets/classes in these models.

- $\varphi_{\text {empty set }}(x)$
- $\varphi_{\text {transitive }}(x)$
- $\varphi_{\text {ordinal }}(x)$
- $\varphi_{\text {successor }}(x)$
- $\varphi_{\text {omega }}(x)$

Fact. Suppose that $\varphi_{\text {cardinal }}(x)$ expresses that x is an initial ordinal. This formula is not equivalent to a Δ_{0}-formula.
(Dependent on G)
Theorem 14.29, Jech. For $x_{i} \in M^{\mathbb{B}}$

$$
M[G] \models \varphi\left(x_{1}^{G}, \ldots, x_{n}^{G}\right) \Leftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathbb{B}} \in G .
$$

c.c.c forcing

c.c.c forcing

Definition of c.c.c. goes here.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.

Corollary.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.

Corollary. If M is a c.t.m.,

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.
Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example,

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.

Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example, G is a generic filter in \mathbb{P},

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.
Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example, G is a generic filter in \mathbb{P}, then $\bigcup G \in M[G]$ is a 1-1 function from ω_{2} into 2^{ω}.

c.c.c forcing

Definition of c.c.c. goes here.
Theorem 14.34, Jech. If \mathbb{P} is a c.c.c. poset, then M and $M[G]$ have the same cardinals, and these have the same cofinalities.

Example. The forcing poset for $f^{\text {inj }}: \omega_{2} \rightarrow 2^{\omega}$ has the c.c.c.
Corollary. If M is a c.t.m., $\mathbb{P} \in M$ is the forcing poset of the Example, G is a generic filter in \mathbb{P}, then $\bigcup G \in M[G]$ is a 1-1 function from ω_{2} into 2^{ω}. Therefore CH fails in $M[G]$.

