Recursion, Arithmetic

Please read LST 80-86 or NST 95-103.

Theorem 1. (Recursion on \mathbb{N}) Assume that A is a set, $a_{0} \in A$, and $g: \mathbb{N} \times A \rightarrow A$ is a function. There is a unique function $f: \mathbb{N} \rightarrow A$ satisfying the conditions
(1) $f(0)=a_{0}$, and
(2) $f(S(n))=g(n, f(n))$.

We say that f is defined by recursion (from g). (For a generalization of this theorem, see Theorem 8.7 of NST/LST.)

Example 2. The following data defines a unique function $f: \mathbb{N} \rightarrow \mathbb{N}$.
(1) $f(0)=1$, and
(2) $f(S(n))=S(n) \cdot f(n)$.

We typically write this function $f(n)=n$!.

Generalizations of Theorem 1.

(1) Recursion with parameters.
(2) Course-of-values recursion.
(3) Definition by recursion using well-founded set-like relations in place of $\langle\mathbb{N} ;<\rangle$.

Application: Definitions and Laws of Arithmetic.

Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

Multiplication

$$
\begin{align*}
m \cdot 0 & :=0 \tag{IC}\\
m \cdot S(n) & :=m \cdot n+m \tag{RR}
\end{align*}
$$

Exponentiation

$$
\begin{align*}
m^{0} & :=1 \tag{IC}\\
m^{S(n)} & :=m^{n} \cdot m \tag{RR}
\end{align*}
$$

Each of these operations is defined by recursion on its second variable with the first variable as a parameter.

Exercises. Prove the statements below.
Laws of successor.
(a) 0 is not a successor. Every nonzero natural number is a successor.
(b) Successor is injective. $(S(m)=S(n)$ implies $m=n$.)

Laws of addition.
(a) $S(n)=n+1$
(b) (Associative Law) $m+(n+k)=(m+n)+k$
(c) (Unit Law for 0) $m+0=0+m=m$
(d) (Commutative Law) $m+n=n+m$
(e) (+-Irreducibility of 0) $m+n=0$ implies $m=n=0$.
(f) (Cancellation) $m+k=n+k$ implies $m=n$.

Laws of multiplication (and addition).
(a) (Associative Law) $m \cdot(n \cdot k)=(m \cdot n) \cdot k$
(b) (Unit Law for 1) $m \cdot 1=1 \cdot m=m$
(c) (Commutative Law) $m \cdot n=n \cdot m$
(d) (0 is absorbing) $m \cdot 0=0 \cdot m=0$
(e) (--Irreducibility of 1) $m \cdot n=1$ implies $m=n=1$
(f) (Distributive Law) $m \cdot(n+k)=(m \cdot n)+(m \cdot k)$

Laws of exponentiation (and multiplication and addition).
(a) $m^{0}=1, m^{1}=m, 0^{m}=0$ (if $m>0$), and $1^{m}=1$.
(b) $m^{n+k}=m^{n} \cdot m^{k}$
(c) $(m \cdot n)^{k}=m^{k} \cdot n^{k}$
(d) $\left(m^{n}\right)^{k}=m^{n \cdot k}$

