Logic Exercises. (+ some solution sketches!)
(1) Write the following formulas formally in the appropriate language.
(a) (Use the language of equality)
κ_{3} : "There exist three distinct elements."

$$
\left(\exists x_{0}\right)\left(\exists x_{1}\right)\left(\exists x_{2}\right)\left(\neg\left(x_{0}=x_{1}\right) \wedge \neg\left(x_{1}=x_{2}\right) \wedge \neg\left(x_{0}=x_{2}\right)\right)
$$

(b) (Use the language of set theory.)
$\varphi_{\subseteq}(x, y): " x \subseteq y$ ".

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

(c) (Use the language of group theory.)
ε : "Any two multiplicative identity elements are equal".
Suppose that $\varphi_{\mathrm{id}}(x)$ expresses that x is a multiplicative identity element. The desired sentence may written with this abbreviation as

$$
(\forall x)(\forall y)\left(\left(\varphi_{\mathrm{id}}(x) \wedge \varphi_{\mathrm{id}}(y)\right) \rightarrow(x=y)\right)
$$

One way to write $\varphi_{\mathrm{id}}(x)$ is as " $(\forall z)((x \cdot z=z) \wedge(z \cdot x=z))$ ". Subsituting this for the abbreviation yields:
$(\forall x)(\forall y)(((\forall z)((x \cdot z=z) \wedge(z \cdot x=z)) \wedge(\forall z)((y \cdot z=z) \wedge(z \cdot y=z))) \rightarrow(x=y))$

The above sentence is not in prenex form. In general, a sentence of the form

$$
(\forall x)((\forall z) P(x, z)) \rightarrow Q(x)),
$$

where $Q(x)$ does not depend on z, has prenex form

$$
(\forall x)(\exists z)(P(x, z) \rightarrow Q(x)) .
$$

(2) Put the following in prenex form:

$$
\begin{gathered}
((\forall x)(x=x) \leftrightarrow(\exists x)(x=x)) \\
(\exists y)(\exists z)(\forall w)(\forall x)(((y=y) \rightarrow(z=z)) \wedge((w=w) \rightarrow(x=x)))
\end{gathered}
$$

(This puts the quantifiers in front. More work is required if you want the quantifierfree part to be written in DNF.)

Additional problems proposed in class:

Give winning strategies for the appropriate quantifiers for each of the following sentences in each of the given structures.
(1) $(\forall x)(\exists y)(x<y)$ in the ordered field $\langle\mathbb{R} ;+,-, 0, \cdot, 1,<\rangle$

The appropriate (=winning) quantifier is \exists.
Strategy:

- \forall chooses some value for x. (\exists has no control over this choice.)
$-\exists$ chooses $y=x+1$.
To show that this is a winning strategy, one must argue that $(\forall x)(x<x+1)$. This is a true statement in any ordered field. To see this, the key points are that (i) $0<1$ in any ordered field, (ii) $(a<b) \rightarrow(c+a<c+b)$ in any ordered field (so, with (i) we get $(0<1) \rightarrow(x+0<x+1)$ and then $x+0<x+1)$, (iii) $x+0=x$ (so with (i) and (ii) we get $x<x+1$).
(2) $(\exists y)(\forall x)(x<y)$ in the ordered field $\langle\mathbb{R} ;+,-, 0, \cdot, 1,<\rangle$

The appropriate (=winning) quantifier is \forall.
Strategy:
$-\exists$ chooses some value for y. (\forall has no control over this choice.)
$-\forall$ chooses $x=y$.
(3) $(\forall a)(\exists b)(\forall c)(\exists d)\left(a^{2}+b^{2}=c^{2}+d^{2}\right)$ in the field $\langle\mathbb{R} ;+,-, 0, \cdot, 1\rangle$

The appropriate (=winning) quantifier is \forall.
Strategy for \forall :

- \forall chooses any $a \in \mathbb{R}$. Since this is meant to be a 'strategy', let's be specific and have \forall choose $a=0$.
$-\exists$ chooses some b.
$-\forall$ computes $a^{2}+b^{2}$ and chooses c large enough so that $a^{2}+b^{2}<c^{2}$. (For specificity, choose $c=|b|+1$.)
$-\exists$ chooses some d.

Now, in \mathbb{R}, squares are nonnegative, so $0 \leq d^{2}$. Adding c^{2} to both sides yields $c^{2} \leq c^{2}+b^{2}$. By the choice of $c, a^{2}+b^{2}<c^{2} \leq c^{2}+d^{2}$, so $a^{2}+b^{2}<c^{2}+d^{2}$. This shows that \forall has won (i.e., following this strategy, $a^{2}+b^{2} \neq c^{2}+d^{2}$).
(4) $(\forall a)(\exists b)(\forall c)(\exists d)\left(a^{2}+b^{2}=c^{2}+d^{2}\right)$ in the field $\langle\mathbb{C} ;+,-, 0, \cdot, 1\rangle$

The appropriate (=winning) quantifier is \exists.
Strategy:
$-\forall$ chooses some a.
$-\exists$ chooses $b=0$.
$-\forall$ chooses some c.

- Now \exists solves the equation $a^{2}+b^{2}=c^{2}+d^{2}$ for d. That is, \exists lets d be any solution to $x^{2}=a^{2}+b^{2}-c^{2}$. Every complex number has a complex square root, so there is such a $d=\sqrt{a^{2}+b^{2}-c^{2}} \in \mathbb{C} . \forall$ chooses such a d and wins.

