Logic Exercises. (+ some solution sketches!)

- (1) Write the following formulas formally in the appropriate language.
 - (a) (Use the language of equality)
 - $\kappa_3:$ "There exist three distinct elements."

$$(\exists x_0)(\exists x_1)(\exists x_2)(\neg(x_0 = x_1) \land \neg(x_1 = x_2) \land \neg(x_0 = x_2))$$

(b) (Use the language of set theory.) $\varphi_{\subseteq}(x, y)$: " $x \subseteq y$ ".

$$(\forall z)((z \in x) \to (z \in y))$$

- (c) (Use the language of group theory.)
 - ε : "Any two multiplicative identity elements are equal".

Suppose that $\varphi_{id}(x)$ expresses that x is a multiplicative identity element. The desired sentence may written with this abbreviation as

 $(\forall x)(\forall y)((\varphi_{\mathrm{id}}(x) \land \varphi_{\mathrm{id}}(y)) \to (x=y))$

One way to write $\varphi_{id}(x)$ is as " $(\forall z)((x \cdot z = z) \land (z \cdot x = z))$ ". Substituting this for the abbreviation yields:

$$(\forall x)(\forall y)(((\forall z)((x \cdot z = z) \land (z \cdot x = z)) \land (\forall z)((y \cdot z = z) \land (z \cdot y = z))) \rightarrow (x = y))$$

The above sentence is not in prenex form. In general, a sentence of the form

$$(\forall x) ((\forall z)P(x,z)) \rightarrow Q(x))$$

where Q(x) does not depend on z, has prenex form

$$(\forall x)(\exists z)(P(x,z) \to Q(x)).$$

(2) Put the following in prenex form:

$$((\forall x)(x=x) \leftrightarrow (\exists x)(x=x))$$

$$(\exists y)(\exists z)(\forall w)(\forall x)(((y=y) \to (z=z)) \land ((w=w) \to (x=x)))$$

(This puts the quantifiers in front. More work is required if you want the quantifierfree part to be written in DNF.)

Additional problems proposed in class:

Give winning strategies for the appropriate quantifiers for each of the following sentences in each of the given structures.

(1) $(\forall x)(\exists y)(x < y)$ in the ordered field $\langle \mathbb{R}; +, -, 0, \cdot, 1, < \rangle$

The appropriate (=winning) quantifier is \exists .

Strategy:

- $-\forall$ chooses some value for x. (\exists has no control over this choice.)
- \exists chooses y = x + 1.

To show that this is a winning strategy, one must argue that $(\forall x)(x < x + 1)$. This is a true statement in any ordered field. To see this, the key points are that (i) 0 < 1 in any ordered field, (ii) $(a < b) \rightarrow (c + a < c + b)$ in any ordered field (so, with (i) we get $(0 < 1) \rightarrow (x + 0 < x + 1)$ and then x + 0 < x + 1), (iii) x + 0 = x (so with (i) and (ii) we get x < x + 1).

(2) $(\exists y)(\forall x)(x < y)$ in the ordered field $\langle \mathbb{R}; +, -, 0, \cdot, 1, < \rangle$

The appropriate (=winning) quantifier is \forall .

Strategy:

- $-\exists$ chooses some value for y. (\forall has no control over this choice.)
- \forall chooses x = y.

(3) $(\forall a)(\exists b)(\forall c)(\exists d)(a^2 + b^2 = c^2 + d^2)$ in the field $\langle \mathbb{R}; +, -, 0, \cdot, 1 \rangle$

The appropriate (=winning) quantifier is \forall .

Strategy for \forall :

- \forall chooses any $a \in \mathbb{R}$. Since this is meant to be a 'strategy', let's be specific and have \forall choose a = 0.
- \exists chooses some b.
- \forall computes $a^2 + b^2$ and chooses c large enough so that $a^2 + b^2 < c^2$. (For specificity, choose c = |b| + 1.)
- \exists chooses some d.

Now, in \mathbb{R} , squares are nonnegative, so $0 \leq d^2$. Adding c^2 to both sides yields $c^2 \leq c^2 + b^2$. By the choice of c, $a^2 + b^2 < c^2 \leq c^2 + d^2$, so $a^2 + b^2 < c^2 + d^2$. This shows that \forall has won (i.e., following this strategy, $a^2 + b^2 \neq c^2 + d^2$).

(4) $(\forall a)(\exists b)(\forall c)(\exists d)(a^2 + b^2 = c^2 + d^2)$ in the field $\langle \mathbb{C}; +, -, 0, \cdot, 1 \rangle$

The appropriate (=winning) quantifier is \exists .

Strategy:

- \forall chooses some a.
- \exists chooses b = 0.
- \forall chooses some c.
- Now \exists solves the equation $a^2 + b^2 = c^2 + d^2$ for d. That is, \exists lets d be any solution to $x^2 = a^2 + b^2 c^2$. Every complex number has a complex square root, so there is such a $d = \sqrt{a^2 + b^2 c^2} \in \mathbb{C}$. \forall chooses such a d and wins.