Additional notes #8.

Galois Connections.

Definition. Let S and T be classes of objects, and let $R \subseteq S \times T$ be a binary relation from S to T. The Galois connection determined by R is the pair of mappings (both denoted \perp) defined by

$$\perp: \mathcal{P}(S) \to \mathcal{P}(T): U \mapsto U^{\perp} = \{t \in T \mid \forall u \in U((u, t) \in R)\}$$

and

$$\perp: \mathcal{P}(T) \to \mathcal{P}(S): V \mapsto V^{\perp} = \{ s \in S \mid \forall v \in V((s, v) \in R) \}.$$

Theorem. Assume that $U \subseteq V \subseteq S$ and $X \subseteq Y \subseteq T$.

- (i) \perp reverses inclusions: $U^{\perp} \supseteq V^{\perp}$ and $X^{\perp} \supseteq Y^{\perp}$.
- (ii) $\perp \perp$ is increasing: $U \subseteq U^{\perp \perp}$ and $X \subseteq X^{\perp \perp}$. (iii) $\perp \perp \perp = \perp$: $U^{\perp} = U^{\perp \perp \perp}$ and $X^{\perp} = X^{\perp \perp \perp}$.
- (iv) The operations

$$\mathsf{cl}: \mathcal{P}(S) \to \mathcal{P}(S): U \mapsto U^{\perp \perp}$$

and

$$\mathsf{cl}:\mathcal{P}(T)\to\mathcal{P}(T):U\mapsto U^{\perp\perp}$$

are closure operators.

(v) A set is closed if and only if it is in the image of \perp .

(vi) If \mathcal{L}_S is the lattice of closed subsets of S and \mathcal{L}_T is the lattice of closed subsets if T, then $\perp : \mathcal{L}_S \to \mathcal{L}_T$ is an order-reversing bijection.

Proof. (i) and (ii) are easy. We show how to derive (iii)–(vi) from (i) and (ii). For (iii), apply \perp to the inclusion in (ii) and use part(i) to get $U^{\perp} \supseteq U^{\perp \perp \perp}$. But by part (ii) we have $U^{\perp} \subset (U^{\perp})^{\perp \perp}$. Hence $U^{\perp} = U^{\perp \perp \perp}$.

For (iv), we have that $\perp \perp$ is extensive from (ii). To prove that $\perp \perp$ is isotone we use (i) twice:

$$U \subseteq V \Longrightarrow U^{\perp} \supseteq V^{\perp} \Longrightarrow U^{\perp \perp} \subseteq V^{\perp \perp}.$$

For idempotence we \perp the equation from (iii) to get

$$U^{\perp\perp} = U^{\perp\perp\perp\perp} = (U^{\perp\perp})^{\perp\perp}.$$

For (v), note that any closed set is in the image of \bot , since $U = U^{\bot \bot}$ implies that U is the result of applying \perp to U^{\perp} . Conversely, if $U = W^{\perp}$, then

$$U^{\perp\perp} = W^{\perp\perp\perp} = W^{\perp} = U,$$

so U is closed.

(vi) follows from (v), (iii), and (i). \Box

Examples.

(1) Let \mathcal{S} be the class of all algebras defined with operations $\cdot, {}^{-1}, 1$. Let \mathcal{T} be the collection of all equations involving only these operation symbols. Let R denote the relation of satisfaction. (This means that $(\mathbf{A}, \varepsilon)$ is in R if and only if $\mathbf{A} \models \varepsilon$, which is a way of writing that the algebra \mathbf{A} satisfies the equation ε .)

In this example, $\{x \cdot (y \cdot z) = (x \cdot y) \cdot z, x \cdot 1 = x, x \cdot x^{-1} = 1\}^{\perp}$ is the class of all groups. More generally, if $\Sigma \subseteq \mathcal{T}$, then Σ^{\perp} is the variety of all algebras satisfying the equations in Σ .

If $\mathcal{K} \subseteq \mathcal{S}$, then \mathcal{K}^{\perp} is the set of all equations that hold in all members of \mathcal{K} . This set of equations is called *the equational theory of* \mathcal{K} .

The lattice of closed subclasses of S is the lattice of all varieties of algebras defined with operations \cdot , $^{-1}$, 1. The lattice of closed subsets of \mathcal{T} is the lattice of equational theories in this language. These lattices are dual to each other.

(2) Let S be a set and let G be a group of permutations of S. The relation $R = \{(s,g) \mid g(s) = s\}$ determines a Galois connection between S and G.

If $s \in S$, then $\{s\}^{\perp}$ is the stabilizer subgroup of s. If $g \in G$, then $\{g\}^{\perp}$ is the set of fixed points of g.

The Galois Connection of Galois Theory

Let $\mathbb{F} < \mathbb{E}$ be a finite extension. Let $G = \operatorname{Gal}(\mathbb{E}/\mathbb{F})$ be the group of all \mathbb{F} -linear automorphisms of \mathbb{E} . Let $R \subseteq \mathbb{E} \times G$ be the relation $R = \{(e,g) \mid g(e) = e\}$. This relation determines a Galois connection between \mathbb{E} and G.

Exercises.

(1) Show that a field automorphism $\sigma : \mathbb{E} \to \mathbb{E}$ is \mathbb{F} -linear (i.e., satisfies $\sigma(f \cdot e) = f \cdot \sigma(e)$ for $f \in \mathbb{F}$ and $e \in \mathbb{E}$) if and only if $\sigma(f) = f$ for all $f \in \mathbb{F}$.

(2) Show that any closed subset of \mathbb{E} is a subfield of \mathbb{E} containing \mathbb{F} .

(3) Show that any closed subset of G is a subgroup.

Fundamental Theorem of Galois Theory. If $\mathbb{F} < \mathbb{E}$ is a finite, normal, separable extension, then every subgroup of $G = \operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is closed, and every intermediate subfield $\mathbb{F} < \mathbb{K} < \mathbb{E}$ is closed.

$\mathbf{2}$