## Forcing. The consistency of ZFC $+\neg \mathrm{CH}$

Let $V$ be a model of ZFC and let $M$ be a transitive set in $V$ that is countable in $V$ and is a model of ZFC. Forcing is a technique to construct an extension $M[G]$ of $M$ in $V$ which satisfies ZFC plus an additional property, e.g., $\neg \mathrm{CH}$. The idea is the following. To 'force' $\neg \mathrm{CH}$ to hold in $M[G]$, we have to arrange that $M[G]$ contains an injection from $\omega_{2}$ in $M[G]$ to $2^{\omega}$.

- $M$ may not contain such an injection $\omega_{2} \rightarrow 2^{\omega}$, but it contains finite 'partial descriptions' of such an injection, which can be viewed as finite partial functions $f \subseteq\left(\omega_{2} \times \omega\right) \times 2$. So, let

$$
P=\left\{f: f \text { is a function with } \operatorname{dmn}(f) \subseteq \omega_{2} \times \omega, \operatorname{rng}(f) \subseteq 2,|f|<\omega\right\}
$$

$P$ is partially ordered by $\supseteq, P \ni \emptyset$, and $(P, \supseteq, \emptyset)$ is a member of $M ; P$ will be called a forcing order.

- To be able to assemble a total function $g: \omega_{2} \times \omega \rightarrow 2$ from partial descriptions in such a way that $g$ yields an injection $\omega_{2} \rightarrow 2^{\omega}$, we extend $M$ by a set $G \subseteq P$ (note: $G$ may not be a member of $M$ ), to get a new set $M^{*}=M[G]$ such that
- $M \subseteq M[G], G \in M[G]$ and $M[G]$ is a countable transitive model of ZFC;
$-g=\bigcup G$ is a function in $M[G]$ which yields an injection $\omega_{2} \rightarrow 2^{\omega}$ (for the cardinals $\omega_{2}$ and $\omega$ in $\left.M[G]\right)$.
A set $G \subseteq P$ used in the construction will be called a filter $P$-generic over $M$, and the new model $M[G]$ of ZFC will be called a generic extension of $M$.
After we
- define forcing orders $P$ and filters $P$-generic over $M$ in general, and study their existence and basic properties,
we have to face several major challenges in order to see that the idea sketched above works:
- Describe the members of a generic extension $M[G]$.
- Prove that $M[G]$ is a countable transitive model of ZFC.
- Prove that, under suitable assumptions (satisfied in the example above), the construction $M \mapsto M[G]$ preserves cardinals. In particular, this means that $\omega, \omega_{1}$, and $\omega_{2}$ are the same cardinals in $M[G]$ as in $M$; that is, the construction $M \mapsto M[G]$ does not introduce any 'unwanted' bijections $\omega \rightarrow \omega_{1}$ or $\omega_{1} \rightarrow \omega_{2}$ in $M[G]$.


## 1. Forcing Orders and Generic Filters

Definition 1.1. A forcing order is a triple $\mathbb{P}=(P, \leq, 1)$ where $P$ is a set, $\leq$ is a reflexive, transitive relation on $P$, and 1 is the largest element of $P$, i.e. $p \leq 1$ for all $p \in P$.

Note that antisymmetry is not required for $\leq$ in a forcing order $(P, \leq, 1)$, so $\leq$ may not be a partial order. Nevertheless, it is useful to think of the members of $P$ as partial descriptions of a set we want to add to our model $M$, where $p \leq q$ means that $p$ is a finer description than $q$.

Definition 1.2. Let $\mathbb{P}=(P, \leq, 1)$ be a forcing order.

- Two elements $p, q \in P$ are compatible (intuitively: have a common refinement) if there exists $r \in P$ such that $r \leq p, q$; otherwise, $p, q$ are called incompatible, and we write $p \perp q$;
- A subset $A$ of $P$ is called an 'antichain' in $\mathbb{P}$ if any two distinct members of $A$ are incompatible;
- A subset $D$ of $P$ is said to be dense in $\mathbb{P}$ if for every $p \in P$ there exists $d \in D$ such that $d \leq p$.
Definition 1.3. Let $\mathbb{P}=(P, \leq, 1)$ be a forcing order, and let $M$ be a c.t.m. of ZFC.
- A filter on $\mathbb{P}$ is a subset $G$ of $P$ such that
- for all $p, q \in G$ there exists $r \in G$ such that $r \leq p, q$, and
- $G$ is up-closed, that is, for all $g \in G$ and $p \in P$, if $g \leq p$, then $p \in G$.
- If $\mathbb{P} \in M$ and $G$ is a subset of $P(G$ is not necessarily a member of $M)$, we say that $G$ is $\mathbb{P}$-generic over $M$, provided
- $G$ is a filter on $\mathbb{P}$, and
- for every dense subset $D$ in $\mathbb{P}$ such that $D \in M$ we have that $G \cap D \neq \emptyset$.

Our first theorem shows that generic filters are usually not in the ground model.
Theorem 1.4. Let $M$ be a c.t.m. of ZFC , let $\mathbb{P}=(P, \leq, 1) \in M$ be a forcing order, and let $G$ be a filter on $\mathbb{P}$ that is $\mathbb{P}$-generic over $M$. If $\mathbb{P}$ satisfies the condition
for every $p \in P$ there exist $q, r \in P$ such that $q, r \leq p$ and $q \perp r$,
then $G \notin M$.
Proof. We chose $P \in M$. If also $G \in M$, we get that $V$ and $M$ agree on the question of what are the elements of $G$ (and the elements of $P$ ), and therefore on the elements of $P-G$. The set $P-G$ is a set in $M$, by comprehension applied to $P$ in $M . P-G$ is dense in $\mathbb{P}$, by condition ( $*$ ), which contradicts $G$ being $\mathbb{P}$-generic.

Theorem 1.5. If $M$ is a c.t.m. of ZFC and $\mathbb{P}=(P, \leq, 1) \in M$ is a forcing order, then for each $p \in P$ there exists a filter $G$ on $\mathbb{P}$ such that $G$ is $\mathbb{P}$-generic over $M$ and $p \in G$.

Proof. Let $\mathcal{D}$ be the set of all dense subsets $D$ of $P$ with $D \in M$. Since $M$ is countable, there exists an onto function $\omega \rightarrow \mathcal{D}, n \mapsto D_{n}$. Now define a sequence $\left\langle q_{n}\right\rangle_{n \in \omega}$ of elements of $P$ by recursion as follows: $q_{0}=p$ and for all $n \in \omega$, given $q_{n} \in P$, let $q_{n+1}$ be an element of $D_{n}$ such that $q_{n+1} \leq q_{n}$. Then the set

$$
G=\left\{r \in P: q_{n} \leq r \text { for some } n \in \omega\right\}
$$

- is a filter on $\mathbb{P}$, and
- is $\mathbb{P}$-generic over $M$.

Clearly, $p \in G$.

