Equipotence, the Natural Numbers, and Finite Sets

(1) Sets X and Y are equipotent if there exists a bijection $\beta: X \rightarrow Y$. We write $|X|=|Y|$ to denote this.
(2) $|X| \leq|Y|$ means that there exists an injection $\gamma: X \rightarrow Y$.
(3) $|X|<|Y|$ means $|X| \leq|Y|$ and $|X| \neq|Y|$.
(4) \mathbb{N} is the intersection of all inductive sets.
(5) A set F is finite if $|F|=|n|$ for some $n \in \mathbb{N}$. (We typically drop the vertical bars on n and write $|F|=n$.) F is infinite iff it is not finite.
(6) For $m, n \in \mathbb{N}$, define $m<n$ if $m \in n$. Define $m \leq n$ if $m<n$ or $m=n$.

Prove the following facts. Here, [HJ] stands for 'Hrbacek and Jech'.
(1) (a) $0 \leq n$ for all $n \in \mathbb{N}$. ([HJ] Lemma 3.2.1.)
(b) $m<S(n)$ iff $m=n$ or $m<n$. ([HJ] Lemma 3.2.1.)
(c) $\langle\mathbb{N} ;<\rangle$ is a totally-ordered set. ([HJ] Theorem 3.2.2.) (Show that $<$ is transitive, asymmetric, and that the Law of Trichotomy holds.)
(2) $\langle\mathbb{N} ;<\rangle$ is a well-ordered set. ([HJ] Theorem 3.2.4.)
(3) If X is finite and Y is a proper subset of X, then there is no bijection $\beta: X \rightarrow Y$. ([HJ] Lemma 4.2.2.)
(4) Derive from (3) that if $m \neq n$, then $|m| \neq|n|$. ([HJ] Corollary 4.2.3.)
(5) Show that \mathbb{N} is infinite. ([HJ] Corollary 4.2.3.)
(6) Show that if X is finite and $Y \subseteq X$, then Y is finite and $|Y| \leq|X|$. ([HJ] Theorem 4.2.4.)
(7) Show that if X is finite and $f: X \rightarrow Z$ is a function, then $f(X)$ is finite. ([HJ] Theorem 4.2.5.)
(8) Show that if X and Y are finite, then $X \cup Y$ is finite. ([HJ] Lemma 4.2.6.)
(9) Show that if X is finite, then $\mathcal{P}(X)$ is finite. ([HJ] Theorem 4.2.8.)
(10) Show that if X is infinite, then $n<|X|$ for all $n \in \mathbb{N}$. ([HJ] Theorem 4.2.9.)
(11) For $m, n \in \mathbb{N}, m<n$ holds iff $m \subsetneq n$. ([HJ] Exercise 3.2.7.)
(12) Read and try all exercises in Section 2.2 of [HJ].

