Equipotence, the Natural Numbers, and Finite Sets

- (1) Sets X and Y are equipotent if there exists a bijection $\beta: X \to Y$. We write |X| = |Y| to denote this.
- (2) $|X| \leq |Y|$ means that there exists an injection $\gamma: X \to Y$.
- (3) |X| < |Y| means $|X| \le |Y|$ and $|X| \ne |Y|$.
- (4) \mathbb{N} is the intersection of all inductive sets.
- (5) A set F is <u>finite</u> if |F| = |n| for some $n \in \mathbb{N}$. (We typically drop the vertical bars on n and write |F| = n.) F is <u>infinite</u> iff it is not finite.
- (6) For $m, n \in \mathbb{N}$, define m < n if $m \in n$. Define $m \le n$ if m < n or m = n.

Prove the following facts. Here, [HJ] stands for 'Hrbacek and Jech'.

- (1) (a) $0 \le n$ for all $n \in \mathbb{N}$. ([HJ] Lemma 3.2.1.)
 - (b) m < S(n) iff m = n or m < n. ([HJ] Lemma 3.2.1.)
 - (c) $\langle \mathbb{N}; \langle \rangle$ is a totally-ordered set. ([HJ] Theorem 3.2.2.) (Show that \langle is transitive, asymmetric, and that the Law of Trichotomy holds.)
- (2) $\langle \mathbb{N}; \langle \rangle$ is a <u>well-ordered set</u>. ([HJ] Theorem 3.2.4.)
- (3) If X is finite and Y is a proper subset of X, then there is no bijection $\beta: X \to Y$. ([HJ] Lemma 4.2.2.)
- (4) Derive from (3) that if $m \neq n$, then $|m| \neq |n|$. ([HJ] Corollary 4.2.3.)
- (5) Show that \mathbb{N} is infinite. ([HJ] Corollary 4.2.3.)
- (6) Show that if X is finite and $Y \subseteq X$, then Y is finite and $|Y| \le |X|$. ([HJ] Theorem 4.2.4.)
- (7) Show that if X is finite and $f: X \to Z$ is a function, then f(X) is finite. ([HJ] Theorem 4.2.5.)
- (8) Show that if X and Y are finite, then $X \cup Y$ is finite. ([HJ] Lemma 4.2.6.)
- (9) Show that if X is finite, then $\mathcal{P}(X)$ is finite. ([HJ] Theorem 4.2.8.)
- (10) Show that if X is infinite, then n < |X| for all $n \in \mathbb{N}$. ([HJ] Theorem 4.2.9.)
- (11) For $m, n \in \mathbb{N}$, m < n holds iff $m \subsetneq n$. ([HJ] Exercise 3.2.7.)
- (12) Read and try all exercises in Section 2.2 of [HJ].