Cardinal Arithmetic.

Read LST 125-143 and Chapter 9 of [HJ].

Definition 1. Given cardinals κ and λ , choose sets X and Y such that $|X| = \kappa$, $|Y| = \lambda$, and $X \cap Y = \emptyset$. (To be specific, choose $X = \kappa \times \{0\}$ and $Y = \lambda \times \{1\}$.)

(1) $\kappa + \lambda = |X \cup Y|.$ (2) $\kappa \cdot \lambda = |X \times Y|.$ (3) $\kappa^{\lambda} = |X^{Y}|.$

We can make a similar definition for the sum or product of an infinite sequence $(\kappa_i)_{i\in I}$ of cardinals: Find pairwise disjoint sets X_i with $|X_i| = \kappa_i$ and define $\sum_{i\in I} \kappa_i = |\bigcup_{i\in I} X_i|$, $\prod_{i\in I} \kappa_i = |\prod_{i\in I} X_i|$,

Definition 2. The *continuum function* is the function $\kappa \mapsto 2^{\kappa}$, which maps cardinals to cardinals.

Definition 3. The \beth numbers are defined recursively by $\beth_0 = \aleph_0$, $\beth_{S(\alpha)} = 2^{\beth_\alpha}$, and $\beth_{\lambda} = \bigcup_{\alpha < \lambda} \beth_{\alpha}$ if λ is a limit ordinal.

Now assume that κ and λ are cardinals.

- (1) If κ and λ are finite, then the cardinal arithmetic operations coincide with the ordinal arithmetic operations.
- (2) If $0 < \kappa \leq \lambda$ and λ is infinite, then $\kappa + \lambda = \kappa \cdot \lambda = \lambda$.
- (3) If $0 < \kappa_i$ for all $i \in I$, then $\sum_{i \in I} \kappa_i = |I| \cdot \sup\{\kappa_i \mid i \in I\}$.
- (4) (Kőnig's Lemma) If $\kappa_i < \lambda_i$ for all $i \in I$, then $\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$.
- (5) (Kőnig's Corollary) If κ is infinite, then $\kappa < \kappa^{\mathrm{cf}(\kappa)}$.
- (6) (Main Theorem of Cardinal Arithmetic) Call κ " λ -reachable from μ " if $\kappa \leq \mu^{\lambda}$. Assume that $\kappa \geq 2$ and λ is infinite. The value of κ^{λ} may be computed as follows:
 - (a) (Case $\kappa \leq \lambda$) $\kappa^{\lambda} = 2^{\lambda}$.
 - (b) (Case κ is infinite and λ -reachable from μ , some $\mu < \kappa$) $\kappa^{\lambda} = \mu^{\lambda}$.
 - (c) (Case κ is infinite and κ is not λ -reachable from μ for any $\mu < \kappa$)

(i) $\kappa^{\lambda} = \kappa$ if $\lambda < cf(\kappa)$, while

(ii)
$$\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$$
 if $\lambda \ge \operatorname{cf}(\kappa)$.