Boolean-Valued Models

Let M be a countable transitive model of ZFC in V.

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M.

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}}=\{x\mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma<\alpha)(\mathrm{dom}(x)\subseteq M_{\gamma}^{\mathbb{B}})\}.$$

$$\bullet \ M_0^{\mathbb{B}} = \varnothing,$$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}}=\{x\mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma<\alpha)(\mathrm{dom}(x)\subseteq M_{\gamma}^{\mathbb{B}})\}.$$

$$\bullet \ M_0^{\mathbb{B}} = \varnothing,$$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}}=\{x\mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma<\alpha)(\mathrm{dom}(x)\subseteq M_{\gamma}^{\mathbb{B}})\}.$$

Examples.

• $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $\bullet \ M_1^{\mathbb{B}} = \{\emptyset\},\$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $\bullet \ M_1^{\mathbb{B}} = \{\emptyset\},\$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.
- (First interesting case!)

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.
- (First interesting case!)

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.
- (First interesting case!) $M_2^{\mathbb{B}} =$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.
- (First interesting case!) $M_2^{\mathbb{B}} = \{\{(\emptyset, b)\} \mid b \in \mathbb{B}\},\$

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\text{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

Examples.

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.
- (First interesting case!) $M_2^{\mathbb{B}} = \{\{(\emptyset, b)\} \mid b \in \mathbb{B}\}$, so $M_2^{\mathbb{B}}$ has one element for each element of \mathbb{B} .

Boolean-Valued Models

Let M be a countable transitive model of ZFC in V. Let $\mathbb B$ be a complete Boolean algebra in M. We define the members of the $\mathbb B$ -valued model $M^{\mathbb B}$ by rank, using recursion.

$$M_{\alpha}^{\mathbb{B}} = \{x \mid x \text{ is a function to } \mathbb{B} \text{ and } (\exists \gamma < \alpha) (\mathrm{dom}(x) \subseteq M_{\gamma}^{\mathbb{B}})\}.$$

Examples.

- $M_0^{\mathbb{B}} = \emptyset$, since there is no $\gamma < 0$.
- $M_1^{\mathbb{B}} = \{\emptyset\}$, since the only function x with empty domain is the empty function.
- (First interesting case!) $M_2^{\mathbb{B}} = \{\{(\emptyset, b)\} \mid b \in \mathbb{B}\}$, so $M_2^{\mathbb{B}}$ has one element for each element of \mathbb{B} .

 $x \in M^{\mathbb{B}}$ iff $(\exists \gamma)(x \in M_{\gamma}^{\mathbb{B}})$. $M^{\mathbb{B}}$ is the class of \mathbb{B} -valued sets in M.

Boolean-Valued Models

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 .

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition. For each element $x \in M$, let

$$\hat{x} = \{(\hat{y},1) \mid y \in x\}.$$

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition. For each element $x \in M$, let

$$\hat{x} = \{(\hat{y},1) \mid y \in x\}.$$

'Hat' is an injective function': $M \to M^2 \subseteq M^{\mathbb{B}}$.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition. For each element $x \in M$, let

$$\hat{x}=\{(\hat{y},1)\mid y\in x\}.$$

'Hat' is an injective function $: M \to M^2 \subseteq M^{\mathbb{B}}$.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition. For each element $x \in M$, let

$$\hat{x} = \{(\hat{y}, 1) \mid y \in x\}.$$

'Hat' is an injective function': $M \to M^2 \subseteq M^{\mathbb{B}}$.

Examples.

 $\mathbf{0}$ $\hat{\varnothing}$ is the empty function.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition. For each element $x \in M$, let

$$\hat{x} = \{(\hat{y}, 1) \mid y \in x\}.$$

'Hat' is an injective function': $M \to M^2 \subseteq M^{\mathbb{B}}$.

Examples.

 $\mathbf{0}$ $\hat{\varnothing}$ is the empty function.

If \mathbb{B}_1 is a complete subalgebra of \mathbb{B}_2 , then $M^{\mathbb{B}_1} \subseteq M^{\mathbb{B}_2}$. That is, any \mathbb{B}_1 -valued set is a \mathbb{B}_2 -valued set whose values (hereditarily) lie in \mathbb{B}_1 . Since **2** is a complete subalgebra of \mathbb{B} for any complete Boolean algebra \mathbb{B} , we get that $M^2 \subseteq M^{\mathbb{B}}$.

We recursively define *standard* elements of $M^{\mathbb{B}}$:

Definition. For each element $x \in M$, let

$$\hat{x} = \{(\hat{y}, 1) \mid y \in x\}.$$

'Hat' is an injective function $: M \to M^2 \subseteq M^{\mathbb{B}}$.

Examples.

- \bigcirc $\hat{\varnothing}$ is the empty function.
- ② $\hat{1} = \{ \widehat{\varnothing} \}$ is the function defined on hatted elements that is the characteristic function of $\{ \widehat{\varnothing} \}$.

Boolean-Valued Models

Our language from $M^{\mathbb{B}}$ will be the first-order language of set theory enriched by a family of constants.

Our language from $M^{\mathbb{B}}$ will be the first-order language of set theory enriched by a family of constants. We will add one constant for each element of $x \in M^{\mathbb{B}}$ and interpret the constant to be x.

Our language from $M^{\mathbb{B}}$ will be the first-order language of set theory enriched by a family of constants. We will add one constant for each element of $x \in M^{\mathbb{B}}$ and interpret the constant to be x. (So, every element of $M^{\mathbb{B}}$ is named by a constant.)

Assigning truth values to sentences

Assigning truth values to sentences

To every σ , a (fuzzy) truth value for σ will be an element $\llbracket \sigma \rrbracket^{\mathbb{B}} \in \mathbb{B}$.

$$\bullet \quad \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}}$$

To every σ , a (fuzzy) truth value for σ will be an element $[\![\sigma]\!]^{\mathbb{B}} \in \mathbb{B}$. We follow these recursive rules for assigning truth:

To get the recursion started, we need to decide the values of $[x=y]^{\mathbb{B}}$ and $[x\in y]^{\mathbb{B}}$.

Boolean-Valued Models

To every σ , a (fuzzy) truth value for σ will be an element $[\![\sigma]\!]^{\mathbb{B}} \in \mathbb{B}$. We follow these recursive rules for assigning truth:

To get the recursion started, we need to decide the values of $[x=y]^{\mathbb{B}}$ and $[x\in y]^{\mathbb{B}}$. This is more delicate.

 $[x = y]^{\mathbb{B}}$ and $[x \in y]^{\mathbb{B}}$

$$[\![x=y]\!]^{\mathbb{B}}$$
 and $[\![x\in y]\!]^{\mathbb{B}}$

$$[x = y]^{\mathbb{B}}$$
 and $[x \in y]^{\mathbb{B}}$

$$\begin{split} \llbracket x = y \rrbracket^{\mathbb{B}} &= \llbracket (\forall z) ((z \in x \to z \in y) \land (z \in y \to z \in x)) \rrbracket^{\mathbb{B}} \\ &= (\bigwedge_{z \in \operatorname{dom}(x)} x(z) \to \llbracket z \in y \rrbracket^{\mathbb{B}}) \land (\bigwedge_{z \in \operatorname{dom}(y)} y(z) \to \llbracket z \in x \rrbracket^{\mathbb{B}}) \end{aligned}$$

$$[x = y]^{\mathbb{B}}$$
 and $[x \in y]^{\mathbb{B}}$

$$\begin{split} \llbracket x = y \rrbracket^{\mathbb{B}} &= \llbracket (\forall z) ((z \in x \to z \in y) \land (z \in y \to z \in x)) \rrbracket^{\mathbb{B}} \\ &= (\bigwedge_{z \in \mathrm{dom}(x)} x(z) \to \llbracket z \in y \rrbracket^{\mathbb{B}}) \land (\bigwedge_{z \in \mathrm{dom}(y)} y(z) \to \llbracket z \in x \rrbracket^{\mathbb{B}}) \end{aligned}$$

and

$$[x = y]^{\mathbb{B}}$$
 and $[x \in y]^{\mathbb{B}}$

and

$$\llbracket x \in y \rrbracket^{\mathbb{B}} = \llbracket (\exists z) ((z \in y \land z = x) \rrbracket^{\mathbb{B}} = \bigvee_{z \in \text{dom}(y)} (y(z) \land \llbracket z = x \rrbracket^{\mathbb{B}})$$

$$[x = y]^{\mathbb{B}}$$
 and $[x \in y]^{\mathbb{B}}$

$$\begin{split} \llbracket x = y \rrbracket^{\mathbb{B}} &= \llbracket (\forall z) ((z \in x \to z \in y) \land (z \in y \to z \in x)) \rrbracket^{\mathbb{B}} \\ &= (\bigwedge_{z \in \operatorname{dom}(x)} x(z) \to \llbracket z \in y \rrbracket^{\mathbb{B}}) \land (\bigwedge_{z \in \operatorname{dom}(y)} y(z) \to \llbracket z \in x \rrbracket^{\mathbb{B}}) \end{aligned}$$

and

$$\llbracket x \in y \rrbracket^{\mathbb{B}} = \llbracket (\exists z)((z \in y \land z = x)]^{\mathbb{B}} = \bigvee_{z \in \text{dom}(y)} (y(z) \land \llbracket z = x \rrbracket^{\mathbb{B}})$$

We take as joint recursive definitions the equality of the LHS and the RHS in each of these.

$$[x = y]^{\mathbb{B}}$$
 and $[x \in y]^{\mathbb{B}}$

and

$$\llbracket x \in y \rrbracket^{\mathbb{B}} = \llbracket (\exists z)((z \in y \land z = x)]^{\mathbb{B}} = \bigvee_{z \in \text{dom}(y)} (y(z) \land \llbracket z = x \rrbracket^{\mathbb{B}})$$

We take as joint recursive definitions the equality of the LHS and the RHS in each of these.

We write $M^{\mathbb{B}} \models \sigma$ to mean $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$.

$$[x = y]^{\mathbb{B}}$$
 and $[x \in y]^{\mathbb{B}}$

$$\begin{bmatrix} x = y \end{bmatrix}^{\mathbb{B}} = \begin{bmatrix} (\forall z)((z \in x \to z \in y) \land (z \in y \to z \in x)) \end{bmatrix}^{\mathbb{B}} \\
= (\bigwedge_{z \in \text{dom}(x)} x(z) \to \begin{bmatrix} z \in y \end{bmatrix}^{\mathbb{B}}) \land (\bigwedge_{z \in \text{dom}(y)} y(z) \to \begin{bmatrix} z \in x \end{bmatrix}^{\mathbb{B}})$$

and

$$\llbracket x \in y \rrbracket^{\mathbb{B}} = \llbracket (\exists z)((z \in y \land z = x)]^{\mathbb{B}} = \bigvee_{z \in \text{dom}(y)} (y(z) \land \llbracket z = x \rrbracket^{\mathbb{B}})$$

We take as joint recursive definitions the equality of the LHS and the RHS in each of these.

We write $M^{\mathbb{B}} \models \sigma$ to mean $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$.

This completes the construction of $M^{\mathbb{B}}$, its language, and the assignment of truth values to sentences.

Theorem.

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

2 If φ has bounded quantification, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

1 In particular, when $\varphi(x,y)$ is x=y or $x \in y$ we get

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

2 If φ has bounded quantification, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

1 In particular, when $\varphi(x,y)$ is x=y or $x \in y$ we get

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

- **1** In particular, when $\varphi(x, y)$ is x = y or $x \in y$ we get
 - $\bullet m_1 = m_2 \text{ in } M \text{ iff } M^{\mathbb{B}} \models \hat{m}_1 = \hat{m}_2.$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

- **1** In particular, when $\varphi(x, y)$ is x = y or $x \in y$ we get
 - $\bullet m_1 = m_2 \text{ in } M \text{ iff } M^{\mathbb{B}} \models \hat{m}_1 = \hat{m}_2.$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

- **1** In particular, when $\varphi(x, y)$ is x = y or $x \in y$ we get
 - $\bullet m_1 = m_2 \text{ in } M \text{ iff } M^{\mathbb{B}} \models \hat{m}_1 = \hat{m}_2.$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

- **1** In particular, when $\varphi(x, y)$ is x = y or $x \in y$ we get
 - $\bullet m_1 = m_2 \text{ in } M \text{ iff } M^{\mathbb{B}} \models \hat{m}_1 = \hat{m}_2.$

Theorem.

• If $\varphi(x_1,\ldots,x_n)$ is a formula and $m_1,\ldots,m_n\in M$, then

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^2 \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

$$M \models \varphi(m_1, \dots, m_n) \leftrightarrow M^{\mathbb{B}} \models \varphi(\hat{m}_1, \dots, \hat{m}_n).$$

- **1** In particular, when $\varphi(x, y)$ is x = y or $x \in y$ we get
 - $\bullet m_1 = m_2 \text{ in } M \text{ iff } M^{\mathbb{B}} \models \hat{m}_1 = \hat{m}_2.$

The conclusion in the title means that $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$ when σ is an axiom of ZFC.

The conclusion in the title means that $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$.

The conclusion in the title means that $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension:

The conclusion in the title means that $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

Proof:

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

Proof: Choose $u \in M^{\mathbb{B}}$.

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

Proof: Choose $u \in M^{\mathbb{B}}$. Define $v \in M^{\mathbb{B}}$ by dom(v) = dom(u)

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

$$v(x) = u(x) \wedge \llbracket \varphi(x) \rrbracket^{\mathbb{B}} \ (\in \mathbb{B}).$$

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

$$v(x) = u(x) \wedge \llbracket \varphi(x) \rrbracket^{\mathbb{B}} \ (\in \mathbb{B}).$$

Expand
$$[(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]]^{\mathbb{B}}$$

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

$$v(x) = u(x) \wedge \llbracket \varphi(x) \rrbracket^{\mathbb{B}} \ (\in \mathbb{B}).$$

Expand
$$[(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]]^{\mathbb{B}}$$
 (=1?)

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

$$v(x) = u(x) \wedge \llbracket \varphi(x) \rrbracket^{\mathbb{B}} \ (\in \mathbb{B}).$$

Expand
$$[(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]]^{\mathbb{B}}$$
 (=1?) to

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

$$v(x) = u(x) \wedge \llbracket \varphi(x) \rrbracket^{\mathbb{B}} \ (\in \mathbb{B}).$$

Expand
$$[\![(\forall x)[(x\in v) \leftrightarrow (x\in u) \land \varphi(x)]]\!]^{\mathbb{B}}$$
 (=1?) to

$$[\![(\forall x \in v)[(x \in u) \land \varphi(x)]\!]]^{\mathbb{B}} \land [\![(\forall x \in u)[\varphi(x) \to (x \in v)]\!]]^{\mathbb{B}}.$$

The conclusion in the title means that $[\![\sigma]\!]^{\mathbb{B}} = 1$ when σ is an axiom of ZFC. $(M^{\mathbb{B}} \models \sigma)$. The full proof can be found in Bell (v. 12, Oxford Logic Guides). Here we sample the proof by establishing Restricted Comprehension: for any formula $\varphi(x)$,

$$(\forall u)(\exists v)(\forall x)[(x \in v) \leftrightarrow (x \in u) \land \varphi(x)]$$

$$v(x) = u(x) \wedge \llbracket \varphi(x) \rrbracket^{\mathbb{B}} \ (\in \mathbb{B}).$$

Expand
$$[\![(\forall x)[(x\in v) \leftrightarrow (x\in u) \land \varphi(x)]]\!]^{\mathbb{B}}$$
 (=1?) to

$$[\![(\forall x \in v)[(x \in u) \land \varphi(x)]\!]]^{\mathbb{B}} \land [\![(\forall x \in u)[\varphi(x) \to (x \in v)]\!]]^{\mathbb{B}}.$$

$$(=1 \land 1?)$$

$$[\![(\forall x \in v)[(x \in u) \land \varphi(x)]]\!]^{\mathbb{B}}$$

$$\begin{split} & \llbracket (\forall x \in v) \llbracket (x \in u) \land \varphi(x) \rrbracket \rrbracket^{\mathbb{B}} \\ &= \bigwedge_{x \in \mathrm{dom}(v)} (\llbracket x \in u \rrbracket^{\mathbb{B}} \land \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \end{split}$$

$$\begin{split} & \llbracket (\forall x \in v) \llbracket (x \in u) \land \varphi(x) \rrbracket \rrbracket^{\mathbb{B}} \\ &= \bigwedge_{x \in \mathrm{dom}(v)} (\llbracket x \in u \rrbracket^{\mathbb{B}} \land \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ &= \bigwedge_{x \in \mathrm{dom}(v)} 1 \land 1 = 1. \end{split}$$

The first conjunct is 1:

$$\begin{split} & \llbracket (\forall x \in v) \llbracket (x \in u) \land \varphi(x) \rrbracket \rrbracket^{\mathbb{B}} \\ &= \bigwedge_{x \in \mathrm{dom}(v)} (\llbracket x \in u \rrbracket^{\mathbb{B}} \land \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ &= \bigwedge_{x \in \mathrm{dom}(v)} 1 \land 1 = 1. \end{split}$$

The second conjunct is 1:

$$\begin{split} & \llbracket (\forall x \in u) [\varphi(x) \to (x \in v)] \rrbracket^{\mathbb{B}} \\ &= \bigwedge_{x \in \mathrm{dom}(u)} (\llbracket \varphi(x) \rrbracket^{\mathbb{B}} \to \llbracket x \in v \rrbracket^{\mathbb{B}}) \end{split}$$

The first conjunct is 1:

$$\begin{split} & \llbracket (\forall x \in v) \llbracket (x \in u) \land \varphi(x) \rrbracket \rrbracket^{\mathbb{B}} \\ &= \bigwedge_{x \in \mathrm{dom}(v)} (\llbracket x \in u \rrbracket^{\mathbb{B}} \land \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ &= \bigwedge_{x \in \mathrm{dom}(v)} 1 \land 1 = 1. \end{split}$$

The second conjunct is 1:

$$\begin{split} & \llbracket (\forall x \in u) [\varphi(x) \to (x \in v)] \rrbracket^{\mathbb{B}} \\ &= \bigwedge_{x \in \mathrm{dom}(u)} (\llbracket \varphi(x) \rrbracket^{\mathbb{B}} \to \llbracket x \in v \rrbracket^{\mathbb{B}}) \\ &= \bigwedge_{x \in \mathrm{dom}(u)} (1 \to 1) = 1. \end{split}$$

Let $\mathbb P$ be a forcing poset and let $\mathbb B$ be its Boolean completion.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq [\![\sigma]\!]^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leq [\![\sigma]\!]^{\mathbb{B}}$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$.

- **5** For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

Let \mathbb{P} be a forcing poset and let \mathbb{B} be its Boolean completion. For $p \in \mathbb{P}$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$.

- **5** For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

Let $\mathbb P$ be a forcing poset and let $\mathbb B$ be its Boolean completion. For $p \in \mathbb P$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb B}$.

- $\bullet \quad \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma]. \quad \llbracket \sigma \rrbracket^{\mathbb{B}} = 0 \text{ iff } \neg (\exists p)[p \Vdash \sigma].$

Let $\mathbb P$ be a forcing poset and let $\mathbb B$ be its Boolean completion. For $p \in \mathbb P$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb B}$.

- $\bullet \quad \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma]. \quad \llbracket \sigma \rrbracket^{\mathbb{B}} = 0 \text{ iff } \neg (\exists p)[p \Vdash \sigma].$

Let $\mathbb P$ be a forcing poset and let $\mathbb B$ be its Boolean completion. For $p \in \mathbb P$ and for a sentence σ say that "p forces σ " and write " $p \Vdash \sigma$ " to mean $p \leqslant \llbracket \sigma \rrbracket^{\mathbb B}$.

- **5** For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.
- $\bullet \quad \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma]. \quad \llbracket \sigma \rrbracket^{\mathbb{B}} = 0 \text{ iff } \neg (\exists p)[p \Vdash \sigma].$

•
$$p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$$

•
$$p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$$

$$\bullet \ p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$$

 (\Rightarrow)

•
$$p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$$

$$(\Rightarrow)$$
 Assume that $p \Vdash \neg \sigma$.

•
$$p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$$

 (\Rightarrow) Assume that $p \Vdash \neg \sigma$. If, for some $q \leqslant p$, we have $q \Vdash \sigma$,

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant [\![\sigma]\!]^{\mathbb{B}}$

• $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$

 (\Rightarrow) Assume that $p \Vdash \neg \sigma$. If, for some $q \leqslant p$, we have $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ and $q \leqslant p$

 $\bullet \ p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$

 $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$

• $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$

 $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^\mathbb{B} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^\mathbb{B} = (\llbracket \sigma \rrbracket^\mathbb{B})',$

• $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$

 $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0.$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^\mathbb{B} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^\mathbb{B} = (\llbracket \sigma \rrbracket^\mathbb{B})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P},$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- (←, Contrapositive)

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold.

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive}) \text{ Assume that } p \Vdash \neg \sigma \text{ fails to hold. Then } p \leqslant [\![\neg \sigma]\!]^{\mathbb{B}}$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) \lceil q \Vdash \sigma \rceil.$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$.

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) \lceil q \Vdash \sigma \rceil.$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$.

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) \lceil q \Vdash \sigma \rceil.$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$.

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- (\Leftarrow , Contrapositive) Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$.

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- (\Rightarrow) Assume that $p \Vdash \neg \sigma$. If, for some $q \leqslant p$, we have $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ and $q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$, so q = 0. This is impossible for $q \in \mathbb{P}$, so $\neg (\exists q \leqslant p)[q \Vdash \sigma]$.
- (\Leftarrow , Contrapositive) Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \wedge \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

$$p \Vdash \sigma \wedge \tau \text{ iff}$$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

$$p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant [\![\sigma \wedge \tau]\!]^{\mathbb{B}}$$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

$$p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}}$$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

$$p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant [\![\sigma \wedge \tau]\!]^{\mathbb{B}} = [\![\sigma]\!]^{\mathbb{B}} \wedge [\![\tau]\!]^{\mathbb{B}} \text{ iff } p \leqslant [\![\sigma]\!]^{\mathbb{B}} \text{ and } p \leqslant [\![\tau]\!]^{\mathbb{B}}$$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

 $p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } p \leqslant \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
- $p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } p \leqslant \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
 - $p \Vdash \sigma \lor \tau \text{ iff } (\forall q \leqslant p)(\exists r \leqslant q)[r \Vdash \sigma \text{ or } r \Vdash \tau].$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
- $p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } p \leqslant \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
 - $p \Vdash \sigma \lor \tau \text{ iff } (\forall q \leqslant p)(\exists r \leqslant q)[r \Vdash \sigma \text{ or } r \Vdash \tau].$

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
- $p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } p \leqslant \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
 - $p \Vdash \sigma \lor \tau \text{ iff } (\forall q \leqslant p)(\exists r \leqslant q)[r \Vdash \sigma \text{ or } r \Vdash \tau].$

Some proofs

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- (\Rightarrow) Assume that $p \Vdash \neg \sigma$. If, for some $q \leqslant p$, we have $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ and $q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$, so q = 0. This is impossible for $q \in \mathbb{P}$, so $\neg (\exists q \leqslant p)[q \Vdash \sigma]$.
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
- $p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } p \leqslant \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$
 - $p \Vdash \sigma \lor \tau$ iff $(\forall q \leqslant p)(\exists r \leqslant q)[r \Vdash \sigma \text{ or } r \Vdash \tau]$.

This follows from the previous two using $\sigma \vee \tau \equiv \neg((\neg(\sigma) \vee (\neg\tau))$.

Some proofs

- $p \Vdash \neg \sigma \text{ iff } \neg (\exists q \leqslant p)[q \Vdash \sigma].$
- $(\Rightarrow) \text{ Assume that } p \Vdash \neg \sigma. \text{ If, for some } q \leqslant p, \text{ we have } q \Vdash \sigma, \text{ then } q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } q \leqslant p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})', \text{ so } q = 0. \text{ This is impossible for } q \in \mathbb{P}, \text{ so } \neg (\exists q \leqslant p) [q \Vdash \sigma].$
- $(\Leftarrow, \text{Contrapositive})$ Assume that $p \Vdash \neg \sigma$ fails to hold. Then $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. Hence $p \land \llbracket \sigma \rrbracket^{\mathbb{B}} \neq 0$. By the density of \mathbb{P} in \mathbb{B} , there exists $q \in \mathbb{P}$ such that $q \leqslant p \land \llbracket \sigma \rrbracket^{\mathbb{B}}$. We have $q \leqslant p$ and $q \Vdash \sigma$. \square
 - $p \Vdash \sigma \land \tau \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

 $p \Vdash \sigma \wedge \tau \text{ iff } p \leqslant \llbracket \sigma \wedge \tau \rrbracket^{\mathbb{B}} = \llbracket \sigma \rrbracket^{\mathbb{B}} \wedge \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}} \text{ and } p \leqslant \llbracket \tau \rrbracket^{\mathbb{B}} \text{ iff } p \Vdash \sigma \text{ and } p \Vdash \tau.$

• $p \Vdash \sigma \lor \tau$ iff $(\forall q \leqslant p)(\exists r \leqslant q)[r \Vdash \sigma \text{ or } r \Vdash \tau]$.

This follows from the previous two using $\sigma \vee \tau \equiv \neg((\neg(\sigma) \vee (\neg\tau))$. \Box

$$p \Vdash (\forall x)\varphi(x)$$
 iff

• $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.

$$p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}}$$

• $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.

$$p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant \llbracket (\forall x) \varphi(x) \rrbracket^{\mathbb{B}} = {\textstyle \bigwedge}_{u \in M^{\mathbb{B}}} \llbracket \varphi(u) \rrbracket^{\mathbb{B}}.$$

• $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.

 $p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant \llbracket (\forall x) \varphi(x) \rrbracket^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} \llbracket \varphi(u) \rrbracket^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}.$

• $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.

$$\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$$

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \longleftrightarrow p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow (\forall x \in a) \llbracket p \Vdash \varphi(\hat{x}) \rrbracket. \end{split}$$

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \longleftrightarrow p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leqslant p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \longleftrightarrow p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} [\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leqslant p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

- $\bullet \ p \Vdash (\forall x) \varphi(x) \text{ iff for all } u \in M^{\mathbb{B}}[p \Vdash \varphi(u)].$
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \longleftrightarrow p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} [\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leqslant p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

• $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.

 $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$

• For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \iff p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \iff p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \iff (\forall x \in a) \llbracket p \Vdash \varphi(\hat{x}) \rrbracket. \Box \end{split}$$

• $(\forall p)(\exists q \leqslant p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

If $p \Vdash \sigma$, take q = p.

- $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \longleftrightarrow p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \longleftrightarrow p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \longleftrightarrow (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leq p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

If $p \Vdash \sigma$, take q = p. Else $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$,

- $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \iff p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \iff p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \iff (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leq p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

If $p \Vdash \sigma$, take q = p. Else $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $p \land (\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$;

- $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \iff p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \iff p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \iff (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leqslant p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

If $p \Vdash \sigma$, take q = p. Else $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $p \land (\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$; choose $q \leqslant p \land (\llbracket \sigma \rrbracket^{\mathbb{B}})'$.

Boolean-Valued Models

- $p \Vdash (\forall x)\varphi(x)$ iff for all $u \in M^{\mathbb{B}}[p \Vdash \varphi(u)]$.
- $\begin{array}{l} p \Vdash (\forall x) \varphi(x) \text{ iff } p \leqslant [\![(\forall x) \varphi(x)]\!]^{\mathbb{B}} = \bigwedge_{u \in M^{\mathbb{B}}} [\![\varphi(u)]\!]^{\mathbb{B}}. \text{ This holds iff } p \Vdash \varphi(u) \text{ for all } u \in M^{\mathbb{B}}. \ \Box \end{array}$
 - For $a \in M$, $p \Vdash (\forall x \in \hat{a})\varphi(x)$ iff $(\forall x \in a)[p \Vdash \varphi(\hat{x})]$.

$$\begin{split} p \Vdash (\forall x \in \hat{a}) \varphi(x) & \iff p \leqslant \llbracket (\forall x \in \hat{a}) \varphi(x) \rrbracket^{\mathbb{B}} \\ & \iff p \leqslant \bigwedge_{x \in \mathrm{dom}(\hat{a})} (\hat{a}(x) \to \llbracket \varphi(x) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} (\hat{a}(\hat{x}) \to \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}}) \\ & \iff p \leqslant \bigwedge_{x \in a} \llbracket \varphi(\hat{x}) \rrbracket^{\mathbb{B}} \\ & \iff (\forall x \in a) [p \Vdash \varphi(\hat{x})]. \Box \end{split}$$

• $(\forall p)(\exists q \leqslant p)[q \Vdash \sigma \text{ or } q \Vdash \neg \sigma].$

If $p \Vdash \sigma$, take q = p. Else $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $p \land (\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$; choose $q \leqslant p \land (\llbracket \sigma \rrbracket^{\mathbb{B}})'$. \square

Boolean-Valued Models

$$\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$$

If
$$\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$$
,

$$\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$$

If
$$[\![\sigma]\!]^{\mathbb{B}} = 1$$
, then $p \leqslant [\![\sigma]\!]^{\mathbb{B}}$ for all p ,

 $\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$.

• $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

 $\text{If } [\![\sigma]\!]^{\mathbb{B}}=1\text{, then }p\leqslant [\![\sigma]\!]^{\mathbb{B}}\text{ for all }p\text{, so }(\forall p)[\![p\Vdash\sigma]\!].\text{ If }[\![\sigma]\!]^{\mathbb{B}}\neq 1,$

$$\text{If } [\![\sigma]\!]^{\mathbb{B}}=1\text{, then }p\leqslant [\![\sigma]\!]^{\mathbb{B}}\text{ for all }p\text{, so }(\forall p)[p\Vdash\sigma]\text{. If }[\![\sigma]\!]^{\mathbb{B}}\neq 1\text{, then }([\![\sigma]\!]^{\mathbb{B}})'\neq 0\text{,}$$

 $\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$.

 $\bullet \ \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$.

 $\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$,

• $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$,

• $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $[\![\sigma]\!]^{\mathbb{B}} = 1$, then $p \leqslant [\![\sigma]\!]^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $[\![\sigma]\!]^{\mathbb{B}} \neq 1$, then $([\![\sigma]\!]^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant ([\![\sigma]\!]^{\mathbb{B}})' = [\![\neg\sigma]\!]^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant [\![\sigma]\!]^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $[\![\sigma]\!]^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $p \Vdash \sigma$ implies $\neg [p \Vdash \neg \sigma]$.

• $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $[\![\sigma]\!]^{\mathbb{B}} = 1$, then $p \leqslant [\![\sigma]\!]^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $[\![\sigma]\!]^{\mathbb{B}} \neq 1$, then $([\![\sigma]\!]^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant ([\![\sigma]\!]^{\mathbb{B}})' = [\![\neg\sigma]\!]^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant [\![\sigma]\!]^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $[\![\sigma]\!]^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $p \Vdash \sigma$ implies $\neg [p \Vdash \neg \sigma]$.

 $\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $p \Vdash \sigma$ implies $\neg [p \Vdash \neg \sigma]$.

Otherwise $p \Vdash \sigma$ and $p \Vdash \neg \sigma$ hold,

 $\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $[\![\sigma]\!]^{\mathbb{B}} = 1$, then $p \leqslant [\![\sigma]\!]^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $[\![\sigma]\!]^{\mathbb{B}} \neq 1$, then $([\![\sigma]\!]^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant ([\![\sigma]\!]^{\mathbb{B}})' = [\![\neg\sigma]\!]^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant [\![\sigma]\!]^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $[\![\sigma]\!]^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $p \Vdash \sigma$ implies $\neg [p \Vdash \neg \sigma]$.

Otherwise $p \Vdash \sigma$ and $p \Vdash \neg \sigma$ hold, so $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ and $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$

• $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $p \Vdash \sigma$ implies $\neg [p \Vdash \neg \sigma]$.

Otherwise $p \Vdash \sigma$ and $p \Vdash \neg \sigma$ hold, so $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ and $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$,

 $\bullet \ \llbracket \sigma \rrbracket^{\mathbb{B}} = 1 \text{ iff } (\forall p)[p \Vdash \sigma].$

If $\llbracket \sigma \rrbracket^{\mathbb{B}} = 1$, then $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ for all p, so $(\forall p)[p \Vdash \sigma]$. If $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$, then $(\llbracket \sigma \rrbracket^{\mathbb{B}})' \neq 0$, so there is a q such that $q \leqslant (\llbracket \sigma \rrbracket^{\mathbb{B}})' = \llbracket \neg \sigma \rrbracket^{\mathbb{B}}$. This leads to $q \Vdash \neg \sigma$. If we also had $q \Vdash \sigma$, then $q \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$, so $q \leqslant 0$, a contradiction. Thus $\llbracket \sigma \rrbracket^{\mathbb{B}} \neq 1$ implies that there exists q such that $q \not\Vdash \sigma$. \square

• $p \Vdash \sigma$ implies $\neg [p \Vdash \neg \sigma]$.

Otherwise $p \Vdash \sigma$ and $p \Vdash \neg \sigma$ hold, so $p \leqslant \llbracket \sigma \rrbracket^{\mathbb{B}}$ and $p \leqslant \llbracket \neg \sigma \rrbracket^{\mathbb{B}} = (\llbracket \sigma \rrbracket^{\mathbb{B}})'$, so p = 0. This can't happen. \square