Boolean-Valued Models

Boolean-Valued Models



Boolean-Valued Models



Let M be a countable transitive model of ZFC in V.

Boolean-Valued Models



Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M.

Boolean-Valued Models



Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by
rank, using recursion.

Boolean-Valued Models



Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by
rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Boolean-Valued Models



Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o M} -2,

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o M} -2,

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MY = {2},

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MY = {2},

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MP = {}, since the only function z with empty domain is the empty

function.

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MP = {}, since the only function z with empty domain is the empty
function.

o (First interesting case!)

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MP = {}, since the only function z with empty domain is the empty
function.

o (First interesting case!)

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MP = {}, since the only function z with empty domain is the empty
function.
o (First interesting case!) M} =

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by

rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MP = {}, since the only function z with empty domain is the empty
function.
o (First interesting case!) MY = {{(F,b)} | be B},

Boolean-Valued Models




Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by
rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.
o MP = {}, since the only function z with empty domain is the empty
function.

o (First interesting case!) M5 = {{(F,b)} | b € B}, so ME has one
element for each element of B.

Boolean-Valued Models



Let M be a countable transitive model of ZFC in V. Let B be a complete
Boolean algebra in M. We define the members of the B-valued model M® by
rank, using recursion.

M2 = {2 | z is a function to B and (37 < a)(dom(z) < MLB)}

Examples.
o ME = (&, since there is no < 0.

o MP = {}, since the only function z with empty domain is the empty
function.

o (First interesting case!) M5 = {{(F,b)} | b € B}, so ME has one
element for each element of B.

x € MP iff (3v)(x € M). MP is the class of B-valued sets in M.
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Standard elements

If B, is a complete subalgebra of By, then M®1 < MB2, That is, any
B;-valued set is a By-valued set whose values (hereditarily) lie in B;. Since 2

is a complete subalgebra of B for any complete Boolean algebra B, we get
that M2 < MB.

We recursively define standard elements of M®:

Definition. For each element 2z € M, let

T={@,1)|yex}.
‘Hat’ is an injective function™> M — M2 < ME.
Examples.

@ & is the empty function.

Q1= @ is the function defined on hatted elements that is the
characteristic function of {(J}.
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The language of B-valued sets

Our language from M® will be the first-order language of set theory enriched
by a family of constants. We will add one constant for each element of

x € M® and interpret the constant to be z. (So, every element of M® is
named by a constant.)
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To every o, a (fuzzy) truth value for o will be an element [o]® € B. We
follow these recursive rules for assigning truth:

0 [o A 7]? = [0o]® A [7]®
Q [ovT]®B=[c]®v[r]®
Q [—o]® = ([o]®)
0 [B2)o(@)]® = Vene [0(a)]®
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To get the recursion started, we need to decide the values of [z = y]® and
[ € y]®. This is more delicate.
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[z = y]® and [z € y]®

We want the following to be true:

[« = y]® =E[( (zex—>zey)n(zey—zen))”

/\zedom ( ) [[Z € y]]B) A (/\zedom(y) y(z) - [[Z € $]]IB)

and

[rey]® =1G)((zeyrz=a)] = \/ (&) Al=2a]"

zedom(y)

We take as joint recursive definitions the equality of the LHS and the RHS in
each of these.

We write M® |= o to mean [o]® =

This completes the construction of M, its language, and the assignment of
truth values to sentences.
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Completion of proof for Restricted Comprehension

The first conjunct is 1:

[(Vz € v)[(2 € u) A p(2)]]®
= NAscdom(w) ([z € ul® A [p(2)]?)
= /\xedom(v) Ial=1

The second conjunct is 1:

= /\medom u)(ﬂ@(‘r) [[ZE € U]]B)
= 1
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