Definitions and Laws of Arithmetic on \mathbb{N} . With Hints!

Addition

$$\begin{array}{ll} m+0 & := m & (\text{IC}) \\ m+S(n) & := S(m+n) & (\text{RR}) \end{array}$$

Multiplication

Exponentiation

$$\begin{array}{ll}
m^{0} & := 1 & (\text{IC}) \\
m^{S(n)} & := m^{n} \cdot m & (\text{RR})
\end{array}$$

(Each of these operations is defined by recursion on its *second* variable.)

Laws of successor. (These should be proved first.)

(a) 0 is not a successor. Every nonzero natural number is the successor of some natural number.

For the first part, $0 = \emptyset$ has no elements, while any successor has at least one element $(x \in x \cup \{x\} = S(x))$.

For the second part, the set of natural numbers that are successors of natural numbers, together with 0, namely the set

 $\{n \in \mathbb{N} \mid \exists k((k \in \mathbb{N}) \land (n = S(k)))\} \cup \{0\},\$

is an inductive subset of \mathbb{N} , hence equals \mathbb{N} . This implies that every nonzero element $n \in \mathbb{N}$ is the successor of some element $k \in \mathbb{N}$.

(b) Successor is injective. (S(m) = S(n) implies m = n.)

If S(x) = S(y), then $x \cup \{x\} = y \cup \{y\}$. Our goal is to prove x = y, so let's assume that this is not the case and derive a contradiction.

We have $x \in x \cup \{x\}$, and $x \cup \{x\} = y \cup \{y\}$, so $x \in y \cup \{y\}$. We have assumed that $x \neq y$, so we must have $x \in y$. A similar argument shows that $y \in x$. This contradicts the Axiom of Foundation. (Specifically, the unordered pair $\{x, y\}$ has no \in -minimal element.)

Laws of addition.

(a) S(n) = n + 1

$$n+1 = n + S(0)$$
(Defn of 1)
= $S(n+0)$ ((RR),+)
= $S(n)$ ((IC),+)

(b) (Associative Law) m + (n+k) = (m+n) + k

We prove this by induction on k. (Base Case: k = 0)

$$m + (n + 0) = m + n$$
((IC), +)
= (m + n) + 0 ((IC), +)

(Inductive Step: Assume true for k, prove true for S(k))

$$\begin{array}{ll} m + (n + S(k)) &= m + S(n + k) & ((\mathrm{RR}), +) \\ &= S(m + (n + k)) & ((\mathrm{RR}), +) \\ &= S((m + n) + k) & (\mathrm{IH}) \\ &= (m + n) + S(k) & ((\mathrm{RR}), +) \end{array}$$

(c) (Unit Law for 0) m + 0 = 0 + m = m

The fact that m + 0 = m is part of the definition of addition, so we only need to prove that 0 + m = m. We argue this by induction on m. (Base Case: m = 0)

$$0 + 0 = 0$$
 ((IC), +)

(Inductive Step: Assume true for m, prove true for S(m))

$$\begin{array}{ll}
0 + S(m) &= S(0 + m) & ((\text{RR}), +) \\
&= S(m) & (\text{IH})
\end{array}$$

2

(d) (Commutative Law) m + n = n + m

We argue this by induction on n. (Base Case: n = 0)

$$m + 0 = 0 + m$$
 (Part (c), +)

Before proceeding to the inductive step, we prove a lemma. It is the "n = 1 case" of the Commutative Law.

Lemma. m + 1 = 1 + m.

Proof of Lemma. (Base Case: m = 0) m + 1 = 0 + 1 = 0 + S(0) (Defn of 1) = S(0 + 0) ((RR), +) = S(0) ((IC), +) = 1 (Defn of 1) = 1 + 0 = 1 + m ((IC), +)

(Inductive Step: Assume m + 1 = 1 + m for some m, prove S(m) + 1 = 1 + S(m))

 $\begin{array}{ll} 1 + S(m) &= S(1+m) & (({\rm RR}), +) \\ &= S(m+1) & ({\rm IH}) \\ &= S(S(m)) & ({\rm Part}\ ({\rm a}), S) \\ &= S(m) + 1 & ({\rm Part}\ ({\rm a}), S) \end{array}$

Now we give the Inductive Step for the proof of (d). We assume that m+n = n+m holds and derive that m + S(n) = S(n) + m.

m + S(n)	=S(m+n)	((RR), +)
	=S(n+m)	(IH)
	= n + S(m)	((RR), +)
	= n + (m+1)	(Part (a), S)
	= n + (1 + m)	(Lemma)
	= (n+1) + m	(Part (b), +)
	=S(n)+m	((RR), +)

(e) (+-Irreducibility of 0) m + n = 0 implies m = n = 0.

If $n \neq 0$, then n = S(k) by Part (a) of the Laws of Successor. Then 0 = m + n = m + S(k) = S(m + k), contradicting that 0 is not a successor. Hence 0 = m + n forces n = 0. But now 0 = m + n = m + 0 = m, so m = 0 too.

(f) (Cancellation) m + k = n + k implies m = n.

(Base Case: k = 0)

m	= m + 0	((IC), +)
	= n + 0	(assumption)
	= n	((IC), +)

(Inductive Step: Assume that m+k = n+k implies m = n. Prove that m+S(k) = n+S(k) implies m = n.)

Assume that m+S(k) = n+S(k). Then by ((RR), +) we have S(m+k) = S(n+k). But the successor function is injective, by Part (b) of the Laws of Successor. Thus, m+k = n+k. Now, by the inductive hypothesis, we derive that m = n.

Laws of multiplication (and addition).

- (a) (Associative Law) $m \cdot (n \cdot k) = (m \cdot n) \cdot k$
- (b) (Unit Law for 1) $m \cdot 1 = 1 \cdot m = m$
- (c) (Commutative Law) $m \cdot n = n \cdot m$
- (d) (0 is absorbing) $m \cdot 0 = 0 \cdot m = 0$
- (e) (-Irreducibility of 1) $m \cdot n = 1$ implies m = n = 1
- (f) (Distributive Law) $m \cdot (n+k) = (m \cdot n) + (m \cdot k)$

Laws of exponentiation (and multiplication and addition).

(a) $m^0 = 1, m^1 = m, 0^m = 0$ (if m > 0), and $1^m = 1$.

- (b) $m^{n+k} = m^n \cdot m^k$
- (c) $(m \cdot n)^k = m^k \cdot n^k$

(d)
$$(m^n)^k = m^{n \cdot j}$$

4