The Main Theorem Cardinal Arithmetic assuming GCH.

For the MTCA, let's say that κ is reachable by λ from μ if $\kappa \leq \mu^{\lambda}$. We will only need this in the case where $\mu<\kappa$, but $\kappa \leq \mu^{\lambda}$. Say that κ is reachable by λ from below if there exists $\mu<\kappa$ such that κ is reachable by λ from μ.

Theorem 1. (MTCA without GCH) If $\kappa \geq 2$ and $\lambda \geq \aleph_{0}$ are cardinals, then κ^{λ} may be computed inductively as follows:
(1) If $\kappa \leq \lambda$, then $\kappa^{\lambda}=2^{\lambda}$.
(2) If κ is reachable by λ from $\mu<\kappa$, then $\kappa^{\lambda}=\mu^{\lambda}$.
(3) If κ is not reachable by λ from below, then $(\lambda<\kappa)$ and
(a) $\kappa^{\lambda}=\kappa^{c f(\kappa)}$ if $c f(\kappa) \leq \lambda<\kappa$, and
(b) $\kappa^{\lambda}=\kappa$ if $\lambda<c f(\kappa)$.

Corollary 2. (MTCA for infinite cardinals under GCH)

$$
\aleph_{\alpha}^{\aleph_{\beta}}= \begin{cases}\aleph_{\beta+1} & \text { if } \aleph_{\alpha} \leq \aleph_{\beta} \\ \aleph_{\alpha+1} & \text { if } c f\left(\aleph_{\alpha}\right) \leq \aleph_{\beta}<\aleph_{\alpha}, \text { and } \\ \aleph_{\alpha} & \text { if } \aleph_{\beta}<c f\left(\aleph_{\alpha}\right) .\end{cases}
$$

Proof. We let $\kappa=\aleph_{\alpha}$ and $\lambda=\aleph_{\beta}$ and refer to the MTCA to establish this corollary, as we now explain.
(Case (1) of MTCA.) If $\kappa=\aleph_{\alpha} \leq \aleph_{\beta}=\lambda$, then $\aleph_{\alpha}^{\aleph_{\beta}}=\kappa^{\lambda}=2^{\lambda}=\lambda^{+}=\aleph_{\beta+1}$ by the MTCA+GCH.

Before continuing, let's determine when κ is reachable from below in the remaining cases where $\lambda<\kappa$. Assume that $\mu<\kappa \leq \mu^{\lambda}$. If $\nu=\max (\lambda, \mu)$, then we have $\nu<\kappa \leq \mu^{\lambda} \leq$ $\nu^{\nu}=\nu^{+}$, where the last equality follows from GCH. Necessarily $\kappa=\mu^{\lambda}=\nu^{+}$. The fact that $\kappa=\mu^{\lambda}$ implies that $\kappa^{\lambda}=\left(\mu^{\lambda}\right)^{\lambda}=\mu^{\lambda}=\kappa$ The fact that $\kappa=\nu^{+}$implies that κ is a successor cardinal. This makes κ regular, so $\lambda, \mu<\kappa=\operatorname{cf}(\kappa)$. In particular, if κ is reachable from below, then we must be in the third case of the statement of this corollary ($\aleph_{\beta}=\lambda<\operatorname{cf}(\kappa)=\operatorname{cf}\left(\aleph_{\alpha}\right)$) and the formula given in the statement of the corollary is correct $\left(\aleph_{\alpha}^{\aleph_{\beta}}=\kappa^{\lambda}=\kappa=\aleph_{\alpha}\right)$.

Let's examine the remaining cases under the assumptions that $\lambda<\kappa$ and κ is not reachable from below by λ. This puts us in Case (3) of the MTCA.
(Case (3)(a) of MTCA.) Assume that κ is not reachable by λ from below and that $\mathrm{cf}(\kappa) \leq$ $\lambda<\kappa$. By the MTCA (3)(a) we have $\kappa \leq \kappa^{\lambda}=\kappa^{\mathrm{cf}(\kappa)}=\beth(\kappa)$. We have $\kappa<\beth(\kappa)$ by Kőnig's Corollary and $\beth(\kappa)=\kappa^{\operatorname{cf}(\kappa)} \leq \kappa^{\kappa} \leq \kappa^{+}$under GCH. Summarizing, $\kappa<\beth(\kappa)=\kappa^{+}$, under GCH. By the second sentence of this paragraph, $\kappa^{\lambda}=\beth(\kappa)$, so $\aleph_{\alpha}^{\aleph_{\beta}}=\kappa^{\lambda}=\kappa^{+}=\aleph_{\alpha+1}$ in this case. This agrees with the formula give in the statement of the corollary.
(Case (3)(b) of MTCA.) Assume that κ is not reachable by λ from below and that $\lambda<$ $\operatorname{cf}(\kappa)$. By the MTCA $(3)(\mathrm{b})$ we have $\kappa^{\lambda}=\kappa$. Hence $\aleph_{\alpha}^{\aleph_{\beta}}=\kappa=\aleph_{\alpha}$ in this case. This agrees with the formula give in the statement of the corollary.

