Representations of Boolean algebras.

Recall that a *filter* on a Boolean algebra $\mathbb B$ is a nonempty subset of B that is

- (1) closed upward, and
- (2) closed under \wedge .

A filter F in \mathbb{B} is proper if $F \subsetneq B$. A filter is an *ultrafilter* is a maximal proper filter. We showed in class that:

Lemma 1. A filter F of \mathbb{B} is an ultrafilter if and only if for all $b \in B$ either $b \in F$ or $b' \in F$.

Theorem 2. (Ultrafilter Lemma) Let \mathbb{B} be a Boolean algebra.

(1) (Version 1 - the usual version)

If F is a proper filter of \mathbb{B} , then F may be extended to an ultrafilter $U \supseteq F$ of \mathbb{B} . (2) (Version 2)

If F is a proper filter of \mathbb{B} and $b \in B - F$, then F may be extended to an ultrafilter $U \supseteq F$ of \mathbb{B} satisfying $b \in B - U$.

(3) (Version 3)

If F is a proper filter of \mathbb{B} , I is an ideal, and $F \cap I = \emptyset$, then then F and I may be extended to an ultrafilter $U \supseteq F$ and a prime ideal $P \supseteq I$ of \mathbb{B} such that $U \cap P = \emptyset$. (Necessarily U and P are complementary.)

Proof. I will write the proof in the language of Boolean rings instead of the language of Boolean algebras. I will also replace "(ultra)filters" with the dual concept of "(maximal) ideals". I will also assume that everyone has already seen a proof that if R is a unital ring and I is an ideal of R, then R may be extended to a maximal ideal of R. I will append a proof of this to the end of these notes, in case you haven't seen it before.

In the ring language, our goal is to prove that if R is a Boolean ring, then:

(1) (Version 1)

If I is a proper ideal of R, then I may be extended to a maximal ideal $M \supseteq I$ of R.

(2) (Version 2)

If I is a proper ideal of R and $b \in R - I$, then I may be extended to a maximal ideal $M \supseteq I$ of R satisfying $b \in R - M$.

(3) (Version 3)

If I and J are a proper ideals of R, and $I \cap (1 + J) = \emptyset$, then there is a maximal ideal M such that $I \subseteq M$ and $1 + J \subseteq 1 + M$.

The proofs begin here.

(1) (Version 1)

I assume that everyone has seen the proof, using Zorn's Lemma or some other form of the Axiom of Choice, that every proper ideal in a unital ring may be extended to a maximal ideal. (Theorem 4.) \Box

(2) (Version 3)

If $I \cap (1 + J) = \emptyset$, then I claim that I + J is a proper ideal of R. To see this, assume the contrary that $I + J = R \ni 1$. There exist $i \in I$ and $j \in J$ such that 1 = i + j. Since we are in a Boolean ring, $1 + j = i + j + j = i \in I \cap (1 + J) = \emptyset$, a contradiction.

Now, since I + J is proper, there is a maximal ideal $M \supseteq I + J$ by Version 1 of this theorem. For this M we have $I \subseteq M$ and $1 + J \subseteq 1 + M$.

(3) (Version 2)

If I is a proper ideal of the Boolean ring R, then it is a proper ideal of the Boolean algebra. The principal filter F = [b] is a nonempty filter of the Boolean algebra that is disjoint from I. Let J = 1 + F be the ring ideal complementary to F, so that F = 1 + J in the ring R. By Version 3, there is a maximal ideal $M \supseteq I$ such that $F = 1 + J \subseteq 1 + M$. Since $b \in F \subseteq 1 + M$, we have $b \notin M$.

If \mathbb{B} is a BA and $b \in B$, let ult(b) be the set of ultrafilters of \mathbb{B} that contain b.

Theorem 3. Let \mathbb{B} be a BA and let X be the set of all ultrafilters of \mathbb{B} . The function

$$ult: \mathbb{B} \to \mathscr{P}(X): b \mapsto ult(b)$$

is an embedding.

Proof.

(1) $\operatorname{ult}(0) = \emptyset$.

No ultrafilter contains 0, since every ultrafilter is proper.

- (2) ult(1) = X. Every ultrafilter contains 1, since (ultra)filters are nonempty and closed upward.
- (3) $\operatorname{ult}(b') = X \operatorname{ult}(b)$. This asserts that every ultrafilter $U \in X$ contains b or b', but not both. By Lemma 1, if $U \in X$, then $b \in U$ or $b' \in U$. U cannot contain both b and b', since this leads to $0 = b \wedge b' \in U$, contradicting the fact that U is proper.
 - (4) $\operatorname{ult}(c \wedge d) = \operatorname{ult}(c) \cap \operatorname{ult}(d)$.

Since $c \wedge d \leq c, d$, any (ultra)filter containing $c \wedge d$ will contain c and d. Hence $ult(c \wedge d) \subseteq ult(c) \cap ult(d)$. Conversely, if $U \in ult(c) \cap ult(d)$, then $c, d \in U$, so $c \wedge d \in U$, so $U \in ult(c \wedge d)$.

(5) $\operatorname{ult}(c \lor d) = \operatorname{ult}(c) \cup \operatorname{ult}(d).$

This follows from what is above by De Morgan's Laws. (Any function that preserves meet and negation will preserve join.)

(6) ult is injective.

We must argue that $a \neq b$ implies $\operatorname{ult}(a) \neq \operatorname{ult}(b)$. Choose $a \neq b$ in \mathbb{B} . Without loss of generality, assume that $a \not\leq b$. Let F = [a] be the principal filter generated by a. Since $a \not\leq b$, we get $b \notin F$, so by the Ultrafilter Lemma (Version 2) we may

 $\mathbf{2}$

extend F to an ultrafilter $U \supseteq F (\ni a)$ satisfying $b \notin U$. Since $U \in ult(a) - ult(b)$, we get that $ult(a) \neq ult(b)$.

Appendix.

Theorem 4. If R is a unital ring and I is a proper ideal of R, then I may be extended to a maximal ideal of R.

Proof. Let P be the poset of a proper ideals of R that contain I ordered by inclusion. (Note: an ideal J of R is proper if and only if $1 \notin J$.) P is nonempty, since $I \in P$.

Claim 5. P is inductively ordered.

We must show that any (well-ordered) chain in P has an upper bound in P. Assume that $C = (I_{\alpha})_{\alpha < \kappa}$ is a chain: $\alpha < \beta$ implies $I_{\alpha} \subseteq I_{\beta}$. It is enough to show that $J = \bigcup_{\alpha < \kappa} I_{\alpha}$ belongs to P, since J contains each I_{α} as a subset.

- (1) *J* is closed under sum: If $r, s \in J = \bigcup_{\alpha < \kappa} I_{\alpha}$, then $r \in I_{\alpha}$, $s \in I_{\beta}$ for some $\alpha, \beta < \kappa$. We have $r, s \in I_{\max(\alpha,\beta)} \subseteq J$, so $r + s \in I_{\max(\alpha,\beta)} \subseteq J$.
- (2) J is closed under multiplication by elements of R: If $r \in R$ and $s \in J = \bigcup_{\alpha < \kappa} I_{\alpha}$, then $s \in I_{\beta}$ for some $\beta < \kappa$. We have $rs \in I_{\beta} \subseteq J$.
- (3) *J* is proper: $1 \notin I_{\alpha}$ for any $\alpha < \kappa$, so $1 \notin \bigcup_{\alpha < \kappa} I_{\alpha} = J$.

Given the claim, we may apply Zorn's Lemma to obtain a maximal element $M \in P$, which is a maximal proper ideal of R containing I.