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this is to study how different objects differ. We do this by studying
structure-preserving (“comparison”) maps f: X — Y. In linear algebra, this
leads to the study of linear transformations 7: V — W, and, as a special case,
endomorphisms 7: V — V. We try to classify these endomorphisms up to
“change of basis” in order to understand the essentially different possibilities.
(E.g., “rotations through angle 6”, “reflections”, “scalings”, “shears”, etc.) We
write A ~ B is A and B are matrices for the same endomorphism but with

respect to different bases. (A is similar to B.)

A ~ B iff there is an invertible matrix C so that B = C~'AC. Another way to
say this is “B is a conjugate of A”, or “B is the conjugate of A by C”. (Any
invertible matrix can be a change-of-basis matrix: C = [c; - - - ¢, is invertible
iff it is the C-0-B matrix from (cy,...,¢,) to (e,...,e,).)

Note that “similarity” is an equivalence relation on the set of n X n-matrices
over FF.
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matrices. By choosing a basis where the first basis vector is the axis of
rotation, the other basis vectors lie in the equatorial plane, and the three basis
vectors form a right handed system, any rotation of R* will have a matrix of

the form
1 0 0

0 cos(f) —sin(0)
0 sin(0) cos(0)

E-values are 1, cos(6) + isin(6), cos(f) — isin(d). So, every rotation matrix
in R3 is similar to a matrix of this kind, and no two different matrices of this
kind are similar to each other. This shows that the “structure” of a rotation is
classified by the angle of rotation.
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A field is algebraically closed if every polynomial p(x) with degree > 0 and
leading coefficient 1 factors into linear factors which all lie in F.

@ Qis not algebraically closed, since p(x) = x> — 2 does not factor into
linear factors with coefficients in Q.

o R is not algebraically closed, since p(x) = x> 4 1 does not factor into
linear factors with coefficients in R.

Fundamental Theorem of Algebra. C is algebraically closed.
More fundamental theorem without a name. If F is any field, then F is
contained in a larger field I such that

@ T is algebraically closed, and

@ every element of [ is a root of some polynomial with coefficients in FF.

The field F is unique up to isomorphism.
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Let A be a matrix with entries in some ACEF, like C.

xa(A) = (A =r)™ - (A —rg)™

The elements r1, . . ., ry are the e-values of A and r; has algebraic multiplicity
m;.

Claim. Similar matrices have the same characteristic polynomials. (Why do
we care?)

Proof.
Assume B = C~'AC.

x8(\) = det(M — C7'AC) = det(C~ (M — A)C)
= det(C 1) det(M — A)det(C) = det(M — A) = xa(\)

It follows that if A ~ B, then A and B have the same e-values and the e-values
have the same algebraic multiplicities.

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

Claim.

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

Claim. If m = dim(V,), then A — r has multiplicity at least m as a factor of
Xa(A).

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

Claim. If m = dim(V,), then A — r has multiplicity at least m as a factor of
Xa(A).

Reason.

The structure of an endomorphism




Algebraic multiplicity versus geometric multiplicity

Claim. If m = dim(V,), then A — r has multiplicity at least m as a factor of
Xa(A).
Reason. Choose a basis B for the subspace V, and extend it to a basis (B, C)

for the whole space.

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

Claim. If m = dim(V,), then A — r has multiplicity at least m as a factor of
Xa(A).
Reason. Choose a basis B for the subspace V, and extend it to a basis (B, C)

' ) . . I, X
for the whole space. With respect to this basis, A has a matrix [I”Om Y]

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

Claim. If m = dim(V,), then A — r has multiplicity at least m as a factor of
Xa(A).

Reason. Choose a basis B for the subspace V, and extend it to a basis (B, C)

. . . .y X
for the whole space. With respect to this basis, A has a matrix [’”Om Y] SO

Xa(A) = det (M - ﬁm ﬂ) = det <[(A _or)lm A : Y])

= det([(A = r)Ly]) - det([M = Y]) = (A = r)"xy (),

The structure of an endomorphism



Algebraic multiplicity versus geometric multiplicity

Claim. If m = dim(V,), then A — r has multiplicity at least m as a factor of
Xa(A).
Reason. Choose a basis B for the subspace V, and extend it to a basis (B, C)

. . . .y X
for the whole space. With respect to this basis, A has a matrix [”Om Y] SO

Xa(A) = det (M - ﬁm ﬂ) = det <[(A _or)lm A : Y])

= det([(A = r)Ly]) - det([M = Y]) = (A = r)"xy (),

so (A — r)™ is a factor of x4(\). This shows that the algebraic multiplicity of
r is at least as large as the geometric multiplicity.
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Distinct eigenspaces are independent

Claim. Suppose that the e-values of A are ry, . .., ry. If B; is a basis for V,,,
then (By, ..., Bx) is independent.

Reason.
Assume the claim is false, and write down a dependence relation of shortest
length:

ciby + -+ b, = 0.

Multiply A and obtain a new dependence relation
Cli”i]bl —+ -+ cur,'ubu =0.

The 7’s cannot all be equal, so this is an essentially new dependence relation.
Use the dependence relations together to find a shorter one. Contradiction!

Consequence. A is diagonalizable iff V has a basis of e-vectors for A iff
geometric multiplicity = algebraic multiplicity for each e-value of A.

The structure of an endomorphism



Generalized e-vectors

The structure of an endomorphism



Generalized e-vectors

A vector v is a e-vector e-value O for A iff Ay = 0v = 0

The structure of an endomorphism



Generalized e-vectors

A vector v is a e-vector e-value 0 for A iff Av = Ov = 0 iff v € null(A).

The structure of an endomorphism



Generalized e-vectors

A vector v is a e-vector e-value 0 for A iff Av = Ov = 0 iff v € null(A4). We
call v a “generalized e-vector” for e-value 0 if v € null(A*) for some k.

The structure of an endomorphism



Generalized e-vectors

A vector v is a e-vector e-value 0 for A iff Av = Ov = 0 iff v € null(A4). We
call v a “generalized e-vector” for e-value 0 if v € null(A*) for some k. More

generally,

The structure of an endomorphism




Generalized e-vectors

A vector v is a e-vector e-value 0 for A iff Av = Ov = 0 iff v € null(A4). We
call v a “generalized e-vector” for e-value 0 if v € null(A*) for some k. More

generally,
Definition. v is a generalized e-vector for e-value )\ if
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Example. A = is nondiagonalizable, but in Jordan form.
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