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Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

A = “Alice is a genius”. The symbol “A” is a propositional variable. It
denotes the proposition “Alice is genius”. “A” may assume the truth
value T or F.

B = “Bob is a genius”.

R = “It is raining”.

W = “The ground is wet”.
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Compound propositions

We can express complex propositions in terms of simpler ones using the
logical connectives: and (∧, conjunction), or (∨, disjunction), not
(¬, negation), if-then (→, implication), if-and-only-if (↔, bi-implication).

R W R ∧W

0 0 0
0 1 0
1 0 0
1 1 1

R W R ∨W

0 0 0
0 1 1
1 0 1
1 1 1

R ¬R

0 1
1 0

R W R→ W

0 0 1
0 1 1
1 0 0
1 1 1

R W R↔ W

0 0 1
0 1 0
1 0 0
1 1 1

R W R⊕W = R Y W

0 0 0
0 1 1
1 0 1
1 1 0
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Example: a truth table for a compound proposition

Write the truth table for P := R ∨ (((A ∧ B)→ (¬R))).

A B R A ∧ B ¬R ((A ∧ B)→ (¬R)) P

0 0 0 0 1 1 1
0 0 1 0 0 1 1
0 1 0 0 1 1 1
0 1 1 0 0 1 1
1 0 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 1 1 1
1 1 1 1 0 0 1

This proposition P is a tautology, because it assumes the value “true” under
any truth assignment to the propositional variables. This means that P is true
because of its logical structure alone, and not because of the truth values of its
variables.
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Tautologies, contradictions, logical equivalence

A (compound) proposition is a tautology it assumes the value “true” under
any truth assignment to the propositional variables.

A (compound) proposition is a contradiction it assumes the value “false”
under any truth assignment to the propositional variables.

Two propositions are (logically) equivalent if they assume the same truth
value under any truth assignment to the propositional variables.
(Write P ≡ Q.)
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Facts and examples

Facts.

The negation of a tautology is a contradiction, and vice versa.

P ≡ Q iff P↔ Q is a tautology.

Logical equivalence is an equivalence relation on the set of all
propositions in a given set of variables.

Examples.
Some Tautologies: (P ∨ (¬P)), (P→ P), ((P ∧ Q)→ P).
Some Equivalences:

¬(¬P) ≡ P

(De Morgan’s Laws) ¬(P ∧ Q) ≡ (¬P) ∨ (¬Q), and
¬(P ∨ Q) ≡ (¬P) ∧ (¬Q)

(Y is redundant) (P Y Q) ≡ ¬(P↔ Q)

(↔ is redundant) (P↔ Q) ≡ (P→ Q) ∧ (Q→ P)

(→ is redundant) (P→ Q) ≡ (¬P) ∨ Q
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Disjunctive normal form, I

A monomial in the variables {A,B,C,D} is a ∧ ( = conjunction) of ±
variables:

(¬A) ∧ B ∧ C ∧ (¬D).

The truth table of a monomial has exactly one row whose value is T = 1:

A B C D (¬A) ∧ B ∧ C ∧ (¬D)

0 0 0 0 0
...

0 1 1 0 1
...

1 1 1 1 0

The monomial (¬A) ∧ B ∧ C ∧ (¬D) assumes value 1 iff
A = 0,B = 1,C = 1,D = 0.
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Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1
only in row j, then M ∨ N has 1 only in rows i and j. Using this idea, one can
create a proposition with any prescribed truth table of the form
“
∨

monomials”, a disjunction ( = ∨) of monomials. This form is called
Disjunctive Normal Form (DNF).

Small example. Create a proposition with truth table

A B C ?

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

((¬A) ∧ B ∧ (¬C)) ∨ (A ∧ (¬B) ∧ C) ∨ (A ∧ B ∧ C)
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Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:

Theorem. Every propositional formula is logically equivalent to a formula in
DNF =

∨
(∧ ± variables).

Corollary. The symbols ∧,∨,¬ are a “complete” set of logical connectives,
in the sense that any proposition is logically equivalent to one expressed with
{∧,∨,¬} + propositional variables.
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DNF depends on the choice of variables

If the set of propositional variables to be considered is {A}, then the DNF for
proposition A is just A = A. But if the set of propositional variables to be
considered is {A,B}, then the DNF for A is (A ∧ (¬B)) ∨ (A ∧ B), since

A B A

0 0 0
0 1 0
1 0 1
1 1 1

If the set of propositional variables to be considered is {A,B,C}, then the
DNF for A is

(A ∧ (¬B) ∧ (¬C)) ∨ (A ∧ (¬B) ∧ C) ∨ (A ∧ B ∧ (¬C)) ∨ (A ∧ B ∧ C)
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Quantifiers: ∀, ∃

Let ϕ(x) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(∃x)ϕ(x)

and read this “there exists x such that ϕ(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that x < 0”. (For example, x = −1 is a
value in R that winesses the truth of this statement.)

We write (∀x)(x < 0) and say “forall x, x < 0”. This statement would be true
in the real numbers if “for all x in R, x < 0”. (Which is NOT the case!)

Note that (∃x)ϕ(x) is true in R but false in N. We learn if (∃x)(x < 0) is true
in a structure by examining the table for “<”.
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Prenex normal form

Prenex normal form means “quantifiers in front”. That is, a statement in
prenex normal form has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex normal
form.

Axiom of Extensionality, not in prenex form:

(∀x)(∀y)((x = y)↔ (∀z)((z ∈ x)↔ (z ∈ y)))

Axiom of Extensionality, in prenex form:

(∀x)(∀y)(∀z)(∃w) (((x = y)→ ((z ∈ x)↔ (z ∈ y)))∧
(((w ∈ x)↔ (w ∈ y))→ (x = y)))

We will describe a process to determine the truth of a sentence in a structure if
the sentence is written in prenex normal form.
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Negation of quantifiers

It is not true that every cat has stripes iff some cat does not have stripes.

It is not true that every x has property P iff some x does not have property P.

¬((∀x)P) ≡ (∃x)(¬P)

It is not true that some x has property P iff every x fails to have property P.

¬((∃x)P) ≡ (∀x)(¬P)

Dogs bark and there is a cat x with stripes ≡ there is a cat x such that (dogs
bark and x has stripes)

B ∧ (∃x)S(x) ≡ (∃x)(B ∧ S(x))
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Rules for prenex normal form

We have rules to move quantifiers to the front, without altering the meaning.

1 ¬(∀x)P ≡ (∃x)(¬P).
2 ¬(∃x)P ≡ (∀x)(¬P).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P→ (∀x)Q ≡ (¬P) ∨ (∀x)Q ≡ (∀x)((¬P) ∨ Q) ≡ (∀x)(P→ Q) if
P does not depend on x.

2 ((∀x)P)→ Q ≡ (¬(∀x)P) ∨ Q ≡ ((∃x)(¬P)) ∨ Q ≡
(∃x)((¬P) ∨ Q) ≡ (∃x)(P→ Q) if Q does not depend on x.

3 ((∀x)P(x))↔ Q ≡ (((∀x)P(x))→ Q) ∧ (Q→ ((∀x)P(x))) ≡
(((∀x)P(x))→ Q) ∧ (Q→ ((∀y)P(y))) ≡ ((∃x)(P(x)→
Q)) ∧ ((∀y)(Q→ P(y))) ≡ (∃x)(∀y)((P(x)→ Q) ∧ (Q→ P(y))) if Q
does not depend on x and P(x),Q do not depend on y.
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Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((∃x)(x < 0)) ∧ ((∃x)(x > 0)).

1 (First step) (∃x)((x < 0) ∧ (∃x)(x > 0)) No error!
2 (Second step) (∃x)(∃x)((x < 0) ∧ (x > 0)) Error!
3 (Alternative second step) (∃x)((x < 0) ∧ (x > 0)) Error!

We need to “standardize the variables apart”, first. That is, rewrite the original
sentence as

((∃x)(x < 0)) ∧ ((∃y)(y > 0)),

in order to avoid variable conflicts. A prenex form for the sentence is

(∃x)(∃y)((x < 0) ∧ (y > 0)).
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