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Semantic versus Syntactic Consequence

Let Σ be a set of sentences (like the axioms for set theory, or like the empty
set of sentences).
Let P be a single sentence. Is P a consequence of Σ? (Does P “follow” from
Σ?)

Definition. P is a semantic consequence of Σ if every structure satisfying Σ
must satisfy P. (Write Σ |= P.)
P is a syntactic consequence of Σ if there is a “proof of P from Σ” (that is, a
proof which uses the statements in Σ as hypotheses, or as additional axioms).
(Write Σ ` P.)

When Σ = ∅, we write “|= P” for “P is true” and “` P” for “P is provable”.

We have already discussed how to check whether a statement P is true in a
structure (check the tables of the structural elements! play quantifier games!).
Today we will discuss provability.
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Proof

A proof of a theorem T is finite sequence of statements

S1, S2, . . . , Sn = T

which ends at T and which has the property that each statement in the list
follows from earlier statements in the list by some (accepted) law of
deduction.

First question. How is this possible? How do proofs get started? (What does
it mean for S1 to follow from earlier statements if there are no earlier
statements?)

Answer. Axioms are statements that follow from the empty collection of
preceding statements!
So, a “proof system” typically specifies its axioms and also the accepted rules
of deduction.
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What does a law of deduction look like?

Examples.

1 (Modus Ponens) = “The mode that affirms”.

(P → Q),P
Q

So if your proof has the structure S1, S2, . . . ,P, . . . ,P → Q, . . . , Sk, then you may continue it one
step by appending Sk+1 = Q to this proof.

2 (Modus Tollens) = “The mode that denies”.

(P → Q),¬Q
¬P

So if your proof has the structure S1, S2, . . . ,¬Q, . . . ,P → Q, . . . , Sk, then you may continue it
one step to get S1, S2, . . . ,¬Q, . . . ,P → Q, . . . , Sk,¬P.

3 (Axioms) A .

4 (Hypothetical syllogism) (P→Q),(Q→R)
(P→R)

5 (Disjunctive syllogism) (P∨Q),¬P
Q

6 (Case analysis) (P→R),(Q→R),(P∨Q)
R
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Silly proof systems

Consider a proof system with no axioms and no rules of deduction. This is a
sound proof system, since you can’t prove any false statements. (You also
can’t prove any true statements!)

Consider a proof system in which every statement is taken to be an axiom.
This is an unsound proof system, since you do prove false statements. (In
fact, any statement T , even a contradictory statement, has a proof of length 1,
namely “T”.

Definitions. A proof system is sound if it does not prove any false statements.
A proof system is complete if it proves every true statement.
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Gödel’s Completeness Theorem

In 1929, Kurt Gödel introduced a proof system for first-order logic. It has
finitely many types of axioms and finitely many rules of deduction.

Gödel’s Completeness Theorem. If Σ ∪ {P} consists of first-order
sentences, then Σ |= P if and only if Σ ` P.

“First-order sentences” are well-formed sentences that have have finite length
and are expressible with quantifiers (∀x) and (∃y) “of the first-order”.
First-order quantifiers apply to individual elements of a structure, but not
“higher-order” entities like subsets, functions, relations, sets of sets, etc.

This result should be interpreted to mean that, at the first-order level, if a
statement is provable, then it is true, and if it is true then it is provable.

Another way to think about this is: at the first-order level, every statement has
a proof or a counterexample.
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First-order quantifiers apply to individual elements of a structure, but not
“higher-order” entities like subsets, functions, relations, sets of sets, etc.

This result should be interpreted to mean that, at the first-order level, if a
statement is provable, then it is true, and if it is true then it is provable.

Another way to think about this is: at the first-order level, every statement has
a proof or a counterexample.
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An almost counter-example to Gödel’s Theorem

Theorem. If X is infinite, then X is infinite.

Recall that “X is infinite” means that X is not finite, which is expressible with
the set Σ = {P0,P1,P2, . . .} of sentences, where Pn is “|X| 6= n”, or “There is
no bijection f : n→ X”. We might also express this with a single sentence Q
which says

(∀n)(∀f )(¬(f : n→ X is a bijection)).

Then Σ |= Q, but Σ 6` Q for any proof system requiring finite-length proofs.
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The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem.

H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C.

(Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.

Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem.

(H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C.

(Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.

Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem.

C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.

(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem.

If 0 < x < 1, then x2 < x.

2 Theorem. If g is a surjective function, f is a surjective function, and g
and f are composable, then g ◦ f is a surjective function.

3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem.

If 0 < x < 1, then x2 < x.

2 Theorem. If g is a surjective function, f is a surjective function, and g
and f are composable, then g ◦ f is a surjective function.

3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.

2 Theorem. If g is a surjective function, f is a surjective function, and g
and f are composable, then g ◦ f is a surjective function.

3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem.

If g is a surjective function, f is a surjective function, and g
and f are composable, then g ◦ f is a surjective function.

3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem.

If g is a surjective function, f is a surjective function, and g
and f are composable, then g ◦ f is a surjective function.

3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.

3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem.

There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem.

There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2)→ C. (Or even (H1 ∧ · · · ∧ Hk)→ C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.
1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.

Truth versus Provability 8 / 12



Simple proof strategies

(Hypotheses are treated as if they were axioms, and previously-proved
theorems are also treated as if they were axioms.)

Theorem. H → C.

Proof structure #1.
H = S1, S2, . . . , Sk = C. 2 (Direct proof.)

Proof structure #2.
¬C, S2, . . . ,¬H. 2 (Proof by contraposition, or direct proof of the
contrapositive statement (¬C)→ (¬H).)

Proof structure #3.
H,¬C, S3, . . . ,⊥. 2 (Proof by contradiction.)
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Examples!

Let’s try these three forms of proof on a theorem concerning R.

Theorem. If 0 < x < 1, then x2 < x.

Proof structure #1.
Assume that 0 < x < 1. Since 0 < x, multiplication by x preserves
inequalities. Multiply x < 1 by x to obtain x2 < x. 2

Proof structure #2.
Assume that x2 6< x. Then x ≤ x2. Hence 0 ≤ x2 − x = x(x− 1). Hence
0 ≤ x, x− 1 or x, x− 1 ≤ 0. The first leads to 0 ≤ x− 1, or 1 ≤ x, while the
second leads to x ≤ 0. Either way, 0 < x < 1 fails.

Proof structure #3.
Assume that 0 < x < 1 and x2 6< x. The first leads to x > 0 and x− 1 < 0,
hence x(x− 1) < 0. The second leads to x2 − x 6< 0. These two statements
contradict one another. 2
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Proofs involving quantifiers

We can use quantifier games to construct a proof strategy for theorems
involving quantifiers. Consider the following theorem, which is true for any
nonempty structure and for any formula ϕ(x).

Theorem. If (∀x)ϕ(x), then (∃x)ϕ(x).

Proof. We will give a winning strategy for ∃ in the game determined by the
sentence “(∃x)ϕ(x)”. In order to access the information in the hypothesis, we
first play a “side game” using the strategy for ∃ in the game determined by the
sentence “(∀x)ϕ(x)”.

∀ chooses some x = r. Loses. This means that ϕ(r) holds.

Now we are in a position to provide a winning strategy for ∃ in the game
determined by the sentence “(∃x)ϕ(x)”.

∃ chooses x = r. Wins, because the side game guarantees that ϕ(r)
holds.
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Proofs involving quantifiers, 2

The previous proof can be written more informally as:

Theorem. If (∀x)ϕ(x), then (∃x)ϕ(x).

Proof. Choose any r. According to the hypothesis, ϕ(r) holds. Therefore,
x = r is a witness to the fact that (∃x)ϕ(x) holds. 2
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