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Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.

Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.

The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1.

How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island

(i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations)

so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2.

What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Predator versus prey

Suppose we want to create a wildlife preserve for endangered tigers on an isolated
island by stocking the island with tigers and deer.
Let Tn be the number of tigers in year n and let Dn be the number of deer in year n.
The size of either population influences that of the other, and (let’s assume that)
experimentation shows that we can expect

Tn+1 − Tn = −10Tn + Dn

Dn+1 − Dn = −20Tn + 2Dn

or
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

Question 1. How should we seed the island (i.e., how should we specify the initial
populations) so that we have a stable system?

Question 2. What happens to the populations if we do not set the initial populations
according to the answer to Question 1?

More applications of e-vectors 2 / 7



Solution

Let A =

[
−9 1
−20 3

]
. Let vn =

[
Tn

Dn

]
be the population vector at year n.

We are given that vn+1 = Avn.
To answer Question 1, we want an initial vector v0 such that v0 = Av0 (= v1), in
which case v0 = v1 = v2 = · · · =: w, and w = Aw, so we want w to be an e-vector
for A with e-value 1. Does A have such an e-vector?

χA(λ) = det(λI − A) = det

[
λ+ 9 −1

20 λ− 3

]
= λ2 + 6λ− 7 = (λ− 1)(λ+ 7).

E-values are λ1 = 1 and λ2 = −7. E-vectors are w1 =

[
1

10

]
, w2 =

[
1
2

]
.

If v0 = c ·
[

1
10

]
, then the population will remain stable. This means: seed the island

with 10 deer for every tiger.
Otherwise v0 = c · w1 + d · w2, with d 6= 0, and
vn = Anv0 = c · λn

1 · w1 + d · λn
2 · w2 = c · w1 + d · (−7)n · w2. Eventually the tiger or

the deer population will no longer be positive.
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Some terminology

In our system,
Tn+1 = −9Tn + Dn

Dn+1 = −20Tn + 3Dn

we say that the system is coupled, since it expresses the evolution of the variables T
and D which interact with one another.
The process of diagonalization decouples the system. That is, it changes the

presentation of the system written in terms of the Tiger axis
[

1
0

]
and the Deer axis[

0
1

]
into a system written in terms of a combined Tiger-Deer axis of stability

w1 =

[
1
10

]
and a second axis w2 =

[
1
2

]
.

The two new axes, or variables, do not interact. The transition matrix A has the effect
of scaling axis w1 by λ1 = 1 and scaling axis w2 by λ2 = −7. “Decoupling” involves

diagonalizing the system, which we DID even though we never wrote down the

diagonal form of A.
(
[w1 w2]

−1A[w1 w2] =

[
1 0
0 −7

]
.

)
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Limiting population distribution

Assume that, each year, 20% of the population P of Colorado moves to other US
states. Assume that 10% of the population Q of other states moves to Colorado. This
yields a system

Pn+1 = (.8)Pn + (.1)Qn

Qn+1 = (.2)Pn + (.9)Qn

Question. What happens to the populations Pn and and Qn as n→∞?

(Note that Pn+1 + Qn+1 = Pn + Qn, so the total population of all states is assumed to
remain constant as n→∞.)
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(Note that Pn+1 + Qn+1 = Pn + Qn, so the total population of all states is assumed to
remain constant as n→∞.)
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Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.

vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v.

Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value.

(Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value.

(Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors,

and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2,

then[
Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2.

As n→∞, this vector approaches
c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado.

(Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Solution

The matrix A =

[
.8 .1
.2 .9

]
is called a left stochastic matrix, since it is a nonnegative

real matrix for which the row vector of all 1’s is a left e-vector with e-value 1.
vA = v. Equivalent, A is a nonnegative real matrix whose columns sums are 1.

Since λ1 = 1 is a left e-value, it is also a right e-value. (Why # 1?)

Since tr(A) = 1.7, the value λ2 = .7 must be the other (right) e-value. (Why # 2?)

If w1 and w2 are the associated e-vectors, and
[

P0
Q0

]
= c · w1 + d · w2, then[

Pn

Qn

]
= An

[
P0
Q0

]
= c · (1)nw1 + d · (.7)nw2. As n→∞, this vector approaches

c · w1.

One choice for w1 ∈ null(I − A) =
[

.2 −.1
−.2 .1

]
is w1 =

[
1
2

]
. We conclude that as

n→∞, the US population inside Colorado will be half of the US population outside
Colorado. (Hence the population of Colorado will be 1/3 of the total US population.)

More applications of e-vectors 6 / 7



Why?

(Why # 1?)
Theorem. A and At have the same characteristic equation, hence the same e-values.
Equivalently, the left and right e-values of A are the same.

Reasoning.
χA(λ) = det(λI − A) = det((λI − A)t) = det(λI − At) = χAt(λ). 2

(Why # 2?)
Theorem. The trace of A is the sum of the e-values of A; the determinant of A is the
product of the e-values.

Reasoning.
For the polynomial with variable λ and roots r1, . . . , rn, we have

(λ− r1) · · · (λ− r2) = λn − (
∑

ri)λ
n−1 + · · ·+ (−1)nr1r2 · · · rn.

On the other hand, the permutation expansion of det(λI − A) yields
χA(λ) = (λ− a11) · · · (λ− nnn) + (terms of degree at most n− 2). Since
(λ− a11) · · · (λ− ann) = λn − (

∑
aii)λ

n−1 + (terms of degree at most n− 2), we get
that

∑
λi =

∑
aii = tr(A). 2
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