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n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
(Formula: (Z) = ﬁlk),)

Theorem.
(@ (}) =0ifk>nork <O0.

®) (o) = () = 1.
+1)
© (1) = () + (5)-
“Combinatorial” Proof of (c).
Count the number of (k + 1)-element subsets of {xj,x2,...,X,41} in two
different ways:

Way 1: (Zi})

Way 2: Add the number of (k + 1)-element subsets that contain x,4; to the
number of (k + 1)-element subsets that do not contain x,11: (}) + (, " ). 0

For an alternative proof, use the formula.
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Pascal’s Triangle

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Theorem. The nth row of Pascal’s triangle is a symmetric, unimodal
sequence that sums to 2".

Symmetric means (Z) = (n k) True, since .
Sums to 2", since . o

k'(n—k —k
Unimodal, since 1 < (,.},)/(}) = W = ekst

ey )y
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The Binomial Theorem

Theorem. (x +y)" = (g)x”yo + ('f)xnflyl + (Z)X"*Zyz +- (Z)xoyn ().

Proof. (Induction on n.)

(n=20)

x+y)0=1= (g)xoyo.

Assume true for n, prove it for n + 1. Multiply (*) by x + y, use IH:

(.X + y)n-H — (g)xn+1y0 4 (Vll)xnyl 4 . 4 (Z)xlyn
oyt e (D) ()
(n-gl)xn+1yo + ("Tl)x”yl S (n—’il-l)xlyn 4 (Zi})xoynH
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. (n n—k\ _ n! (n—k)! _ n
Answer: (;) - (",") = K(n—K)! "~ O(n—k—0)1 — Ke(n—k—0)]
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Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : E!((nn—_kkz!f)! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

n!

Definition. If n = ki + - - + ky, then (" ) = /1.
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ki elements from n, then k, elements from the remainder, then .. .etc.”

ey )y s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : E!((nn—_kkz!f)! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

ey )y s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : E!((nn—_kkz!f)! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

e (o,---,z,---,o) =1

)y s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : E!((nn—_kkz!f)! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

e (o,---,z,---,o) =1

)y s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : E!((nn—_kkz!f)! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

e (o,---,z,---,o) =1

° (kl,k;...,k,) = (kl—ln;zlk) + (k1 ,kzn—_lf...,k,) +ot (kl,k;:,lk,—l)-

)y s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : E!((nn—_kkz!f)! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

e (o,---,z,---,o) =1

° (kl,k;...,k,) = (kl—ln;zlk) + (k1 ,kzn—_lf...,k,) +ot (kl,k;:,lk,—l)-

)y s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : m(&n—_kkz!a! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

e (o,---,z,---,o) =1
° (kl,k;...,k,) = (kl—ln;zlk) + (k1 ,kzn—_lf...,k,) +ot (kl,k;:,lk,—l)-

Multinomial Theorem.

oy s



Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an ¢-element subset from the remaining elements?

Answer: (;) (”Zk) = k!(nnik)! : m(&n—_kkz!a! = k!Z!(nri!k—E)! = (k,f,nrikff)‘

Definition. If n = k; + - - - + k,, then ( ") = B
The combinatorial interpretation of ( & ) is “the number of ways to choose

ki elements from n, then k, elements from the remainder, then .. .etc.”

Recursion.

e (o,---,z,---,o) =1
° (kl,k;...,k,) = (kl—ln;zlk) + (k1 ,kzn—_lf...,k,) +ot (kl,k;:,lk,—l)-

Multinomial Theorem.
n _ n ki ko kr
(1 x4 20)" = D e (g ko k) VXD X
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n-multichoose-k

Definition. (informal) A multiset is a set with repetitions allowed, like
{1,1,1,2,3,3} (Order does not matter, only multiplicity.)

[(more formally) A multiset is an ordered pair (S, f) where S is a set and
f:§ — Nis a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is
("+§_]). (We write ((}) or MC(n, k) for this quantity)

“Stars and Bars” Proof.

[Whiteboard!]
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