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Pascal’s Triangle

Theorem. The nth row of Pascal’s triangle is a symmetric, unimodal
sequence that sums to 2n.

Symmetric means
(n

k

)
=
( n

n−k

)
. True, since . . .

Sums to 2n, since . . .
Unimodal, since 1 ≤

( n
k+1

)
/
(n

k

)
= k!(n−k)!

(k+1)!(n−k−1)! =
n−k
k+1 ⇔ k ≤ n−1

2 .
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n
k

)
,
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n
k1,...,kr

)
,
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n
k
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The Binomial Theorem

Theorem. (x + y)n =
(n

0

)
xny0 +

(n
1

)
xn−1y1 +

(n
2

)
xn−2y2 + · · ·+

(n
n

)
x0yn (∗).

Proof. (Induction on n.)
(n = 0)
(x + y)0 = 1 =

(n
0

)
x0y0.

Assume true for n, prove it for n + 1. Multiply (∗) by x + y, use IH:

(x + y)n+1 =
(n

0

)
xn+1y0 +

(n
1

)
xny1 + · · · +

(n
n

)
x1yn

+
(n

0

)
xny1 + · · · +

( n
n−1

)
x1yn +

(n
n

)
x0yn+1

(n+1
0

)
xn+1y0 +

(n+1
1

)
xny1 + · · · +

(n+1
n

)
x1yn +

(n+1
n+1

)
x0yn+1
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Trinomial and multinomial coefficients

Problem. How many ways can we choose a k-element subset from n
elements, and then an `-element subset from the remaining elements?

Answer:
(n

k

)
·
(n−k

`

)
= n!

k!(n−k)! ·
(n−k)!

`!(n−k−`)! = n!
k!`!(n−k−`)! =

( n
k,`,n−k−`

)
.

Definition. If n = k1 + · · ·+ kr, then
( n

k1,...,kr

)
= n!

k1!···kr!
.

The combinatorial interpretation of
( n

k1,...,kr

)
is “the number of ways to choose

k1 elements from n, then k2 elements from the remainder, then . . . etc.”

Recursion.

( n
0,··· ,n,··· ,0

)
= 1.( n

k1,k2,...,kr

)
=
( n−1

k1−1,k2,...,kr

)
+
( n−1

k1,k2−1,...,kr

)
+ · · ·+

( n−1
k1,k2,...,kr−1

)
.

Multinomial Theorem.
(x1 + x2 + · · ·+ xr)

n =
∑

k1+k2+···+xr=n

( n
k1,k2,...,kr

)
xk1

1 xk2
2 · · · xkr

r .

(
n
k

)
,
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n-multichoose-k

Definition. (informal) A multiset is a set with repetitions allowed, like
{1, 1, 1, 2, 3, 3} (Order does not matter, only multiplicity.)
[(more formally) A multiset is an ordered pair (S, f ) where S is a set and
f : S→ N is a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is(n+k−1
k

)
. (We write

((n
k

))
or MC(n, k) for this quantity)

“Stars and Bars” Proof.

[Whiteboard!]

(
n
k

)
,
(

n
k1,...,kr

)
,
((

n
k

))
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Counting problems where multichoose numbers show up

1 How many ways k-element multisubsets of an n-element are there?
((n

k

))
.

2 How many ways are there to distribute k identical objects to n distinct
recipients if each recipient may receive no objects, one object, or
multiple objects?

((n
k

))
.

3 How many nonnegative integer solutions to

x1 + · · ·+ xn = k

are there?
((n

k

))
.

(
n
k

)
,
(

n
k1,...,kr

)
,
((

n
k

))
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