
Solutions to HW 7.

1. Let V be the real vector space of n×n matrices. Let U ≤ V be the subspace of upper
triangular matrices and let L ≤ V be the subspace of lower triangular matrices. By
computing the necessary dimensions, verify that dim(U + L) = dim(U) + dim(L)−
dim(U ∩ L). (Note: a matrix is upper triangular if all entries strictly below the
main diagonal are zero, and is lower triangular if all entries strictly above the main
diagonal are zero.)

Solution. A typical n× n upper triangular matrix has the form
a11 a11 · · · a1n
0 a21 · · · a2n
...

...
. . .

...
0 0 · · · ann

 .

To specify such a matrix, one must specify one entry from the first column, two from the
second, i from the ith, until n from the nth column, so intuitively we guess that the dimension

of the space of these matrices is 1+2+ · · ·+n = n(n+1)
2

. This intuition can be made rigorous
by exhibiting a basis for the space which has this size, namely

(E11, E12, E22, E13, E23, E33, . . . , E1n, E2n, . . . , Enn).

This yields dim(U) = n(n+1)
2

. A similar calculation shows that dim(L) = n(n+1)
2

. Since
U ∩L is the space of diagonal matrices, and each diagonal matrix has n independent entries,
it is not hard to see that dim(U ∩ L) = n. It is also not hard to see that U + L = V,
since U + L contains all matrices Eij, and the set of these is a basis for V. In particular,
dim(U + L) = dim(V) = n2. (These dimension counts can be worded in a more precise
way by establishing that {Eij | i ≤ j} is a basis for U , {Eij | i ≥ j} is a basis for L,
{Eii | 1 ≤ i ≤ n} is a basis for U ∩ L, and {Eij | all i, j} is a basis for U + L = V.)

To verify that dim(U + L) = dim(U) + dim(L)− dim(U ∩ L) we calculate

dim(U) + dim(L)− dim(U ∩ L) =
n(n + 1)

2
+

n(n + 1)

2
− n = n2 = dim(U + L).

2. Let P3 be the 4-dimensional real vector space of all polynomials in R[x] that have de-
gree at most 3. Let S ≤ P3 be the 2-dimensional subspace of those polynomials p(x)
satisfying p(1) = p(2) = 0. Find bases for P3 and S, and a basis for a complement
S⊥ to S.

Solution. The most obvious basis for P3 is B = (1, x, x2, x3).
Next we seek a basis for S. A polynomial p(x) belongs to S if it has degree at most 3 and

has factors x − 1 and x − 2, which means that it can written as p(x) = (x − 1)(x − 2)q(x)
1



2

where q(x) has degree at most 1. This degree restriction on q means that q(x) = ax + b for
some a and b. Hence

p(x) = (x− 1)(x− 2)(ax + b) = ax(x− 1)(x− 2) + b(x− 1)(x− 2),

which shows that any p ∈ S is a linear combination of f(x) = (x − 1)(x − 2) and g(x) =
x(x− 1)(x− 2). Both f and g belong to S, and neither is a scalar multiple of the other, so
C = (f, g) must be a basis for S.

Next we apply the algorithm to thin out a spanning set (C|B) = (f, g, 1, x, x2, x3) to a
basis. (When written in coordinates, this is called the “column space algorithm”.) It has
the effect of locating a new basis for P3 which includes f and g.

Since the first four vectors in (C|B) = (f, g, 1, x, x2, x3) are independent,1 and P3 is 4-
dimensional, it must be that (f, g, 1, x) is a basis for P3. The first two are a basis for S, so
the second two must span a complement to S.

This shows that one possible answer to the question is (1, x). You might have obtained
a different answer, since S has many complements and each one has many bases. The
most likely alternative answers for bases for a complement to S are of the form (xi, xj),
i 6= j. Any such pair is a basis for a complement, and these alternatives might arise if you
used the vectors in B in a different order. In general, a correct answer will consist of an
independent sequence (u(x), v(x)) of length 2, with both u, v ∈ P3, such that there is no
nonzero combination au(x) + bv(x) that has roots at both x = 1 and x = 2.

3. Use a determinant to find the area of the triangle in R2 whose vertices are (1, 1),
(3, 61), (101, 3). (Hint: a triangle is half a parallelogram.)

Solution. Rigidly translate the triangle so that one vertex is at the origin. You can do
this by subtracting (1, 1) from each pair of coordinates: (0, 0), (2, 60), (100, 2). Now the

vectors

[
2
60

]
and

[
100
2

]
lie along two sides of a parallelogram whose area is twice the desired

value. This means the answer is

1

2
· det

[
100 2
2 60

]
=

1

2
· (6000− 4) = 3000− 2 = 2998.

1To see this, suppose that c1 · f + c2 · g + c3 · 1 + c4 · x = 0. Then c3 + c4x = −c1f − c2g is a linear
polynomial with roots at x = 1 and x = 2, so c3 + c4x = 0 = −c1f − c2g. From this and the independence
of both {1, x} and {f, g} we derive that c1 = c2 = c3 = c4 = 0.


