
Solutions to HW 6.

1. Let A be the 4× 4 matrix whose entries are all 1’s, and let T (x) = Ax.
(a) Find a basis for the image of T .
(b) Find a basis for the kernel of T .
(c) What is the rank of T? (Recall that rank(T ) = dim(im(T )).)

Solution. The first step is to put A in RRE form: 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

 −−−−−−−→
 1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

 .

Part (a): There is a unique pivot column in the RRE form, the first column, so the first
column of the original matrix A constitutes a 1-vector basis for the image (=column space).

I write I =

1

1

1
1

 for this basis.

Part (b): From the RRE form obtained in Part (a), we find that the free variables are
x2, x3, x4, and the general solution to the homogeneous system in vector form isx1
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According to our algorithm, K =

−11
0
0

 ,

−10
1
0

 ,

−10
0
1

 is a basis for the kernel.

Part (c): The rank of T is the dimension of the image of T , which is the size of I, namely
it is 1.

2. Let A be the matrix for differentiation D : P3 → P3 : f(x) 7→ f ′(x) relative to the
ordered basis (1, x, x2, x3), and let T (x) = Ax.
(a) Find a basis for the image of T .
(b) Find a basis for the kernel of T .
(c) What is the rank of T?

Solution. We know the matrix for A, from HW5(1), so let’s put it in RRE form: 0 1 0 0

0 0 2 0
0 0 0 3

0 0 0 0

 −−−−−−−→
 0 1 0 0

0 0 1 0
0 0 0 1

0 0 0 0

 .

1



2

Part (a): The last three columns are the pivot columns, so a basis for the image consists

of the last three columns of the original matrix. I write I =

1

0

0
0

 ,

0
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0
0

 ,

0

0

3
0

 for this

basis.
Part (b): From the RRE form obtained in Part (a), we find that the only free variable is

x1, and the general solution to the homogeneous system in vector form isx1

x2
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x4

 =
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0
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0
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 .

According to our algorithm, K =

1

0
0

0

 is a basis for the kernel.

Part (c): The rank of T is the dimension of the image of T , which is the size of I, namely
it is 3.

3. If A is an n × n matrix, then any matrix of the form B = C−1AC is called a
conjugate of A. Explain why the following statement is true: If T : Rn → Rn is a
linear transformation whose matrix relative to the standard basis E is A = E [T ]E ,
then the matrix B[T ]B for T relative to some other basis B is a conjugate of the
matrix A.

Solution. Let A = E [T ]E , B = B[T ]B, C = E [id]B, and D = B[id]E . It follows from
HW5(3) that CD = E [id]B · B[id]E = E [id]E = I and DC = B[id]E · E [id]B = B[id]B = I, so
C−1 = D = B[id]E . Hence C−1AC = B[id]E · E [T ]E · E [id]B = B[id ◦ T ◦ id]B = B[T ]B = B.


