
Solutions to HW 3.

1. Exercise 2.16, parts (b), (c), (d).

Solutions.

(b) Find the angle between the diagonal of the unit cube in R3 and one of the axes.

The vector e1 points along the first coordinate axis, while the vector d = e1 + e2 + e3
points along the diagonal. The cosine of the angle between them is

cos(θ) =
d · e1
‖d‖ · ‖e1‖

=
1√
3
.

Hence θ = cos−1(1/
√

3).

(c) Find the angle between the diagonal of the unit cube in Rn and one of the axes.

If we repeat the same argument as in part (b), but use d = e1 + e2 + · · ·+ en, we get

cos(θ) =
d · e1
‖d‖ · ‖e1‖

=
1√
n
.

Hence θ = cos−1(1/
√
n).

(d) What is the limit, as n goes to ∞, of the angle between the diagonal of the unit cube in
Rn and any one of the axes?

If θn = cos−1(1/
√
n), then limn→∞ θn = limn→∞ cos−1(1/

√
n) = cos−1(limn→∞ 1/

√
n) =

cos−1(0) = π/2.

2. Let ei be the vector of length n whose ith entry is 1 and whose other entries are 0. The
set {e1, e2, . . . , en} is called the standard basis for Rn. Show that the standard basis is
independent.

Solution. If c1 · e1 + · · ·+ cn · en = 0, then
c1
c2
...
cn

 =


0
0
...
0

 .
Equating entries, we get c1 = c2 = · · · = cn = 0.

3. Let A be an m× n matrix and let ei be a standard basis vector of length n. Explain why
the product A · ei equals the ith column of A.
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Solution. Write A as [ars] and ei as [ur1]. Here ur1 = 0 if r 6= i and ui1 = 1.
Since A is m × n and ei is n × 1, the product A · ei is defined and is of shape m × 1. That is,

it is a column vector of length m. The r-entry of this vector is its r, 1-entry when considered as a
matrix, and this is

∑n
k=1 arkuk1 according to the definition of matrix multiplication. But uk1 = 0

if k 6= i, and ui1 = 1, so the sum
∑n

k=1 arkuk1 reduces to ari. This shows that A · ei is a column
vector of length m whose r-entry is ari. The same statement is true for the ith column of A, so
A · ei equals the ith column of A.

(X) Optional Fun Challenge! (0 points!) An ant starts at a point in the plane and walks
in a straight line for 1 unit. He then turns left at a right angle and walks in a straight line
for 1/2 unit. He then turns left again at a right angle and walks 1/3 unit. He continues to
turn left at right angles and walk 1/4 unit, 1/5 unit, 1/6 unit, ETC. As time progresses,
this ant spirals closer and closer to a limiting location. At the limit, how far will the ant
be from where he started?

Solution. Assume that the ant starts at the origin. The location of the ant approaches the
limiting location [

1
0

]
+

[
0
1
2

]
+

[
−1

3
0

]
+

[
0
−1

4

]
+

[
1
5
0

]
+ · · · =

[
1− 1

3 + 1
5 − · · ·

1
2 −

1
4 + 1

6 − · · ·

]
.

You may remember (from Calculus) that 1− 1
3 + 1

5 − · · · converges to π
4 , and that 1− 1

2 + 1
3 − · · ·

converges to ln(2). The first of these is derived from 1
1+x2

= 1−x2+x4−x6+· · · through integration

over [0, 1], and the second is derived from 1
1+x = 1 − x + x2 − x3 + · · · through integration over

[0, 1].
From the second series, we derive that 1

2 −
1
4 + 1

6 − · · · =
1
2(1− 1

2 + 1
3 − · · · ) = 1

2(ln(2)). Hence
the limiting location is [ π

4
ln(2)
2 )

]
.

At the limit, the ant will be √(π
4

)2
+

(
ln(2)

2

)2

units from where it started. (This is about .8585 units.)


