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The Jordan form of a matrix is unique up to a permutation of the Jordan blocks. O

Jordan form 2/7



Jordan form 3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

Jordan form 3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

Jordan form 3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 01] 0000
001 ] 0000
000 1] 0000
o{J3(()O>JOO]:0000100
+(0) 000 | 00T1°0
0001 000°1
00071000 O

.

3 x 3 Jordan block and one 4 x 4 Jordan bloc

Jordan form

is in Jordan form with one

3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 01] 0000
001 ] 0000
000 1] 0000
o{J3(()O>JOO]:0000100
+(0) 000 | 00T1°0
0001 000°1
00071000 O

.

3 x 3 Jordan block and one 4 x 4 Jordan bloc

Jordan form

is in Jordan form with one

3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 0] 00O0TO

001 ] 0O0O0TD O

000 ] 0OO0OO0OTDO

O{JS(()()) J(()O)]: 000 ] 0100
4 000 | 00T1°0

000 | 0O0O0O]1

000 ] 0O0O0OTO

3 x 3 Jordan block and one 4 x 4 Jordan block.

to e-value 0.

Jordan form

is in Jordan form with one

“Both Jordan blocks correspond

3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 01] 0000
001 ] 0000
000 1] 0000
o{J3(()O>JOO]:0000100
+(0) 000 | 00T1°0
0001 000°1
000 1] 00O0O

is in Jordan form with one

3 x 3 Jordan block and one 4 x 4 Jordan block. Both Jordan blocks correspond
to e-value 0. The characteristic polynomial for this matrix is (A — 0)7 = 7.

Jordan form

3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 01] 0000
001 ] 0000
000 1] 0000
o{J3(()O>JOO]:0000100
+(0) 000 | 00T1°0
0001 000°1
000 1] 00O0O

is in Jordan form with one

3 x 3 Jordan block and one 4 x 4 Jordan block. Both Jordan blocks correspond
to e-value 0. The characteristic polynomial for this matrix is (A — 0)7 = 7.
This is also the characteristic polynomial for the 7 x 7 zero matrix.

Jordan form

3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 01] 0000
001 ] 0000
000 1] 0000
o{J3(()O>JOO]:0000100
+(0) 000 | 00T1°0
0001 000°1
000 1] 00O0O

is in Jordan form with one

3 x 3 Jordan block and one 4 x 4 Jordan block. Both Jordan blocks correspond
to e-value 0. The characteristic polynomial for this matrix is (A — 0)7 = 7.
This is also the characteristic polynomial for the 7 x 7 zero matrix. The two
matrices are not similar, since they have different ranks. (5 versus 0.)

Jordan form

3/7



@ A diagonal matrix is in Jordan form with Jordan blocks of size 1.

01 01] 0000
001 ] 0000
000 1] 0000
o{J3(()O>JOO]:0000100
+(0) 000 | 00T1°0
0001 000°1
000 1] 00O0O

is in Jordan form with one

3 x 3 Jordan block and one 4 x 4 Jordan block. Both Jordan blocks correspond
to e-value 0. The characteristic polynomial for this matrix is (A — 0)7 = 7.
This is also the characteristic polynomial for the 7 x 7 zero matrix. The two
matrices are not similar, since they have different ranks. (5 versus 0.)

0

(e

|

[1
° {Jz(()l) 12(()3)] - é

0
0
3
0

(USI

J

Jordan form

3/7



“Abstract” Jordan decomposition

Jordan form 4/7



“Abstract” Jordan decomposition

Assume that A is a matrix over F, and that its Jordan from over F is

JoA) 0 0
e | O at) 0
0 0 o Ju (M)

Jordan form 4/7



“Abstract” Jordan decomposition

Assume that A is a matrix over F, and that its Jordan from over F is

JoA) 0 0
e | O at) 0
0 0 o Ju (M)

Write each J;(\) as Dg(\) + Ny (diagonal part + nilpotent part).

Jordan form 4/7



“Abstract” Jordan decomposition

Assume that A is a matrix over F, and that its Jordan from over F is

JoA) 0 0
e | O at) 0
0 0 o Ju (M)

Write each J;(\) as Dg(\) + Ny (diagonal part + nilpotent part). Observe that
D4(A) and N; commute:

Jordan form 4/7



“Abstract” Jordan decomposition

Assume that A is a matrix over F, and that its Jordan from over F is

JoA) 0 0
e | O at) 0
0 0 o Ju (M)

Write each J;(\) as Dg(\) + Ny (diagonal part + nilpotent part). Observe that
D4(A) and Ny commute: Dg(N) - Ng = Ny - Dg(X).

Jordan form 4/7



“Abstract” Jordan decomposition

Assume that A is a matrix over F, and that its Jordan from over F is

JoA) 0 0
e | O at) 0
0 0 o Ju (M)

Write each J;(\) as Dg(\) + Ny (diagonal part + nilpotent part). Observe that
D4(A) and Ny commute: Dg(A) - Ng = Ny - Dg(A). Then
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Example. The matrix C~'AC = [0 3 O] may be expressed as
0 0 2

3.0 0 0 1 0
[0 3 0] + [0 0 0} =D + N. (Note that DN = ND = 3N.)
0 0 2 0 0 0
A itself may be written A = CDC~! + CNC~! = D + N where
@ D = CDC!is diagonalizable over F (with diagonal form D), and
XD = XD = X4,
@ N = CNC~!is nilpotent (N = (CNC~!)" = CN"C~! = 0),
@ D and N commute
(DN = CcDC~'CNC~! = C(DN)C~! = C(ND)C~! = N'D).
This decomposition exists over the original field and it is unique. Sometimes,
this properties capture the most important aspects of Jordan form.
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Exercise. Suppose that A is a matrix with entries in QQ that has finite
multiplicative order. (A" = I for some n.) Show that A is diagonalizable over

C.

Solution 1. Write A = D + N be the abstract Jordan decomposition of A. By
the binomial theorem (which holds, since DN = N'D),

[=A"=(D+N)"=D"+ (T)D”‘1N+ <Z>D"‘2N2+--~ ,

SO (’11) D" !N = 0. Since xp = x4, and A is invertible, D"~! is invertible.
Hence N = 0. Hence A = D is diagonalizable.

Solution 2. A satisfies X" — 1 for some n. Hence minpoly,, #(x) divides
x" — 1, which has distinct complex roots. We must have that minpoly , #(x)

factors into distinct linear factors over [F, since x* — 1 does.
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@ Computing with diagonal matrices is often as easy as computing with scalar
values.

@ Not all matrices are diagonalizable, but are nearly so (= Jordan form over ).
@ We have necessary and sufficient conditions to determine diagonalizability.

@ “New” sufficient condition: Any matrix over [ that has distinct e-values is
diagonalizable over FF. (Not really new!)

@ The subfields F < C inherit its distance function, d(x,y) = |x — y|, so we can
talk about convergence of sequences in F, F", or M, x,(F). It can be shown that
any matrix in M, ,(IF) is a limit of a sequence of matrices which each have
distinct e-values. Hence, if a theorem can be proved for diagonal matrices, one
can sometimes conclude that it holds for all matrices by showing that the
theorem is true in the limit. (E.g., Cayley-Hamilton Theorem.)
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@ The Jordan form of small-dimension matrices can be determined by x4 and
rank calculations. (E.g., no ambiguity up to 3 x 3.)
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