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How close can we get to diagonal form?

Let V be a finite dimensional vector space over an algebraically closed field F. (For
example, F = C.) Let T : V→ V be an endomorphism.

Theorem. (Jordan Form for T) There exists a basis B for V such that the matrix
A = B[T]B has the “block” diagonal form

A =


Jd1(λi1) 0 · · · 0

0 Jd2(λi2) 0
...

...
0 0 · · · Jdk(λik)


where Jd(λ) is a d × d upper triangular Jordan block:

Jd(λ) =


λ 1 · · · 0 0
0 λ 0 0
.
.
.

. . .
.
.
.

0 0 λ 1
0 0 · · · 0 λ

 =


λ 0 · · · 0 0
0 λ 0 0
.
.
.

. . .
.
.
.

0 0 λ 0
0 0 · · · 0 λ

+


0 1 · · · 0 0
0 0 0 0
.
.
.

. . .
.
.
.

0 0 0 1
0 0 · · · 0 0

 = λId + Nd

The Jordan form of a matrix is unique up to a permutation of the Jordan blocks. 2
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Examples

A diagonal matrix is in Jordan form with Jordan blocks of size 1.

[
J3(0) 0

0 J4(0)

]
=



0 1 0 | 0 0 0 0
0 0 1 | 0 0 0 0
0 0 0 | 0 0 0 0
0 0 0 | 0 1 0 0
0 0 0 | 0 0 1 0
0 0 0 | 0 0 0 1
0 0 0 | 0 0 0 0


is in Jordan form with one

3× 3 Jordan block and one 4× 4 Jordan block. Both Jordan blocks correspond
to e-value 0. The characteristic polynomial for this matrix is (λ− 0)7 = λ7.
This is also the characteristic polynomial for the 7× 7 zero matrix. The two
matrices are not similar, since they have different ranks. (5 versus 0.)

[
J2(1) 0

0 J2(3)

]
=


1 1 | 0 0
0 1 | 0 0
0 0 | 3 1
0 0 | 0 3


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“Abstract” Jordan decomposition

Assume that A is a matrix over F, and that its Jordan from over F is

C−1AC =


Jd1(λi1) 0 · · · 0

0 Jd2(λi2) 0
...

...
0 0 · · · Jdk(λik)


Write each Jd(λ) as Dd(λ) + Nd (diagonal part + nilpotent part). Observe that
Dd(λ) and Nd commute: Dd(λ) · Nd = Nd · Dd(λ). Then

C−1AC =


Dd1 (λi1 ) 0 · · · 0

0 Dd2 (λi2 ) 0

.

.

.
.
.
.

0 0 · · · Ddk
(λik )

 +


Nd1 0 · · · 0

0 Nd2 0

.

.

.
.
.
.

0 0 · · · Ndk

 = D + N

where DN = ND.
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“Abstract” Jordan decomposition, 2

Example. The matrix C−1AC =

[
3 1 0
0 3 0
0 0 2

]
may be expressed as[

3 0 0
0 3 0
0 0 2

]
+

[
0 1 0
0 0 0
0 0 0

]
= D + N. (Note that DN = ND = 3N.)

A itself may be written A = CDC−1 + CNC−1 = D +N where

1 D = CDC−1 is diagonalizable over F (with diagonal form D), and
χD = χD = χA,

2 N = CNC−1 is nilpotent (N n = (CNC−1)n = CNnC−1 = 0),
3 D and N commute

(DN = CDC−1CNC−1 = C(DN)C−1 = C(ND)C−1 = ND).

This decomposition exists over the original field and it is unique. Sometimes,
this properties capture the most important aspects of Jordan form.
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An exercise!

Exercise. Suppose that A is a matrix with entries in Q that has finite
multiplicative order. (An = I for some n.) Show that A is diagonalizable over
C.

Solution 1. Write A = D +N be the abstract Jordan decomposition of A. By
the binomial theorem (which holds, since DN = ND),

I = An = (D +N )n = Dn +

(
n
1

)
Dn−1N +

(
n
2

)
Dn−2N 2 + · · · ,

so
(n

1

)
Dn−1N = 0. Since χD = χA, and A is invertible, Dn−1 is invertible.

Hence N = 0. Hence A = D is diagonalizable.

Solution 2. A satisfies xn − 1 for some n. Hence minpolyA,F(x) divides
xn − 1, which has distinct complex roots. We must have that minpolyA,F(x)
factors into distinct linear factors over F, since xn − 1 does.
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Solution 1. Write A = D +N be the abstract Jordan decomposition of A. By
the binomial theorem (which holds, since DN = ND),

I = An = (D +N )n = Dn +

(
n
1

)
Dn−1N +

(
n
2

)
Dn−2N 2 + · · · ,

so
(n

1

)
Dn−1N = 0. Since χD = χA, and A is invertible, Dn−1 is invertible.

Hence N = 0. Hence A = D is diagonalizable.

Solution 2. A satisfies xn − 1 for some n. Hence minpolyA,F(x) divides
xn − 1, which has distinct complex roots. We must have that minpolyA,F(x)
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Final comments on diagonalizability

Computing with diagonal matrices is often as easy as computing with scalar
values.

Not all matrices are diagonalizable, but are nearly so (= Jordan form over F).

We have necessary and sufficient conditions to determine diagonalizability.

“New” sufficient condition: Any matrix over F that has distinct e-values is
diagonalizable over F. (Not really new!)

The subfields F ≤ C inherit its distance function, d(x, y) = |x− y|, so we can
talk about convergence of sequences in F, Fn, or Mn×n(F). It can be shown that
any matrix in Mn×n(F) is a limit of a sequence of matrices which each have
distinct e-values. Hence, if a theorem can be proved for diagonal matrices, one
can sometimes conclude that it holds for all matrices by showing that the
theorem is true in the limit. (E.g., Cayley-Hamilton Theorem.)

The Jordan form of small-dimension matrices can be determined by χA and
rank calculations. (E.g., no ambiguity up to 3× 3.)
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