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First Question: What is 2 + 2?

(Answer in chat!)

Everyone should know the answer to this question, so we ask:

Second Question: Why is your answer to the First Question correct?

A typical answer to the second question, which you might have heard in 1st
grade is:
Put 2 apples in a bag.
Now put 2 more apples in the bag.
Now count the apples in the bag.
There will be 4.
Therefore 2 + 2 = 4.

The 1st grade explanation is incorrect. The correct explanation of any simple
fact about numbers will not depend on the outcome of a physical experiment.
The correct explanation can be given if you know the correct definitions of
“2”, “+”, “=”, and “4”. Otherwise, the correct explanation cannot be given.
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What we do not know

We do not know how human beings first became aware of the concept of “2”.

Perhaps Caveman Ogg said to Caveman Grogg:

“Come on over for some Brontosaurus burgers! One moon ago I traveled
three valleys to the west and bagged two Brontos.”

In some way like this, the use of numbers to measure time, distance, and
quantity gradually entered human conciousness. But we can’t know exactly
how it happened.
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What science tells us

1 Anatomically modern humans: ∼ 100, 000− 200, 000 years ago.
2 Behaviorally modern humans: ∼ 30, 000− 50, 000 years ago.
3 Earliest written texts: ∼ 4600 years ago.
4 Earliest written mathematical records (Plimpton 322, Rhind Papyrus,

Moscow Mathematical Papyrus): ∼ 3900 years ago.

In the earliest existing records about mathematics, humans already know the
Pythagorean theorem and how to solve the quadratic equation.

So, we can’t know precisely how or when a primitive concept like the number
2 came into being, but mathematics was reorganized during the late
1800s–early 1900s (Dedekind, Cantor, Peano, Zermelo, Hilbert), and we can
now know the precise definition that mathematicians have chosen for the
number “2”.
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Naive set theory

Temporarily, I ask you to accept the following “definition”:

A set is an unordered collection of distinct elements.
The notation x ∈ A means that A is a set and x is one of the elements of A.

Examples of Sets.

1 (Empty set) { } (Roster notation).
2 (Set of letters of the Latin alphabet) {A,B,C, . . . ,Z} (Roster notation).
3 (Natural numbers) N = {0, 1, 2, 3, . . .} (Roster notation). (3 ∈ N)
4 (Even natural numbers) E = {x ∈ N | x is even} (Set-builder notation).

(3 /∈ E)

I did not provide a “real definition” of “set”, because I have not tried to make
the concept of “set” definite. To do that, I would have to first define
“unordered”, “collection”, “distinct”, “element”, which I won’t do.

Since we want sets to be unordered collections of distinct elements

{A,B} = {B,A} = {A,A,B} = {A,B,A,B,B,B, . . .}.
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4 (Even natural numbers) E = {x ∈ N | x is even} (Set-builder notation).

(3 /∈ E)

I did not provide a “real definition” of “set”, because I have not tried to make
the concept of “set” definite. To do that, I would have to first define
“unordered”, “collection”, “distinct”, “element”, which I won’t do.

Since we want sets to be unordered collections of distinct elements

{A,B}

= {B,A} = {A,A,B} = {A,B,A,B,B,B, . . .}.
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Numbers

Some natural numbers:
0 := { }
1 := {0}
2 := {0, 1}
3 := {0, 1, 2}

Df. (Successor) S(x) := x ∪ {x}.
(Take 1 := S(0), 2 := S(1), to be definitions of the symbols 1, 2, . . ., etc.)

Df. (Definition of Addition (by recursion))

m + 0 := m (Initial condition)
m + S(n) := S(m + n) (Recurrence relation)

Ex. (2 + 2 =?)

2 + 2
Df
= 2 + S(1) RR

= S(2 + 1)
Df
= S(2 + S(0)) RR

= SS(2 + 0) IC
= SS(2)

Df
= S(3)

Df
= 4
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