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Recall

Definition. Let T : V→ V be a linear transformation from an F-space to
itself. (We call T an endomorphism of V.) A vector v 6= 0 is an eigenvector
for T if T(v) = λ · v.

We think of an eigenvector as a vector that points in the direction of some
“axis” for T .

We call v a λ-eigenvector for T . Since v 6= 0, λ is uniquely determined by v.

If V is finite dimensional, with ordered basis (b1, . . . ,bn), then it is possible
to write T in matrix form so that [T(x)]B = A · [x]B for A = B[T]B. In this
case we may refer to eigenvectors for the matrix A.
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Diagonalization

Theorem. Let A be the matrix for an endomorphism T , written in a basis
B = (b1, . . . ,bn). A is a diagonal matrix iff B consists of e-vectors for A. In
fact,

A = B[T]B = [[T(b1)]B · · · [T(bn)]B]

= [[λ1 · b1]B · · · [λn · bn]B]

=


λ1 0 · · · 0
0 λ2 0
...

. . . 0
0 0 · · · λn

 = Λ
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Finding the λ-eigenvectors

Suppose we are given λ.

Av = λ · v iff (A− λI)v = 0

iff v ∈ null(A− λI).

The space Vλ := null(A− λI) is called the λ-eigenspace for A. Its nonzero
vectors are the λ-eigenvectors.

Note. If λ 6= µ, then Vλ ∩ Vµ = {0}. (λ = lambda, µ = mu)
To see this, choose v ∈ Vλ ∩ Vµ.
Av = λv = µv, so λv = µv, so (λ− µ)v = 0, so v = 0.
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Finding the candidates for λ

λ is an eigenvalue for A iff dim(Vλ) > 0

iff A− λI has nontrivial null space

iff A− λI is singular

iff det(A− λI) = 0

iff det(λI − A) = 0.

Definition.
χA(λ) := det(λI − A) is the characteristic polynomial of A.
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An example

Find the characteristic polynomial, e-values, e-spaces of A =

[
1 2
3 4

]
, and

then diagonalize A (if possible).

Stage 1. (Find the characteristic polynomial)
χA(λ) = det(λI − A) = det

(
λI −

[
1 2
3 4

])
= det

([
λ− 1 −2
−3 λ− 4

])
= λ2 − 5λ− 2.

Stage 2. (Find the e-values)
λ = 5±

√
33

2 .
λ1 = 5+

√
33

2 . λ2 = 5−
√

33
2 .

Stage 3. (Find the e-spaces)
Vλ1 = null(λ1I − A).[

λ1 − 1 −2
−3 λ1 − 4

]
=

[
3+
√

33
2 −2
−3 −3+

√
33

2

] 1
λ1−1 R1

−−−−−−→
3R1+R2

[
1 −4

3+
√

33
0 0

]

v1 =

[ 4
3+
√

33
1

]
=

[ 2
λ1−1

1

]
, v2 =

[ 2
λ2−1

1

]
=

[ 4
3−
√

33
1

]
. Vλi = span{vi}.
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An application

Find
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Diagonalization summary

To diagonalize A

1 Find the characteristic polynomial, χA(λ) = det(λI − A).
2 Find the e-values. (The roots of χA(λ).)
3 Find a basis B of e-vectors, if such a basis exists. (Form the union of

bases for all Vλ = null(λI − A) = null(A− λI).)
4 Let C = [B].
5 C−1AC = Λ is diagonal.
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What could go wrong?

Two things can go wrong in an attempt to diagonalize a matrix A ∈ Mn×n(F).

1 The scalar field F may not contain all of the e-values of A.

Assume that C−1AC = D is diagonal. v is a λ-eigenvector for A iff C−1v is a
λ-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

2 The algebraic multiplicity of some e-value λ may exceed the geometric
multiplicity of λ.

Let λ be an e-value for some matrix A. The algebraic multiplicity of λ is the
multiplicity of λ as a root of χA. I write multalg(λ) for this number. The
geometric multiplicity of λ is the dimension of Vλ. I write multgeom(λ) for this
number.

Assume that C−1AC = D is diagonal. χA(λ) = χD(λ), so A and D have the
same algebraic multiplicity. C : Vλ,D → Vλ,A is an isomorphism, and A and D
have the same geometric multiplicity. The algebraic and geometric multiplicity
of λ in D are equal, so the same must be true for A.
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Example for Problem 1.

If A =

[
0 −1
1 0

]
∈ M2×2(R), where R is our scalar field, then

χA(λ) = det(λI − A) = det(

[
λ 1
−1 λ

]
) = λ2 + 1.

This polynomial has no real roots. Hence A has no e-values in the scalar field.
This blocks A from being diagonalizable over R.

Are we stuck? Not completely. Extend the scalar field R to the larger
(algebraically closed) field C and work there. E-values are +i,−i. Basis of

e-vectors is B =

([
i
1

]
,

[
−i
1

])
. If C = [B], then C−1AC =

[
i 0
0 −i

]
.
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Example for Problem 2.

Example. Let A =

[
0 1
0 0

]
. χA(λ) = det(

[
λ −1
0 λ

]
) = λ2.

χA(λ) = λ2 has a double root, λ = 0. multalg(0) = 2. Vλ = span
([

1
0

])
, so

multgeom(0) = 1. The fact that multgeom(0) < multalg(0) implies that A
cannot be diagonalized.

An easy proof of the nondiagonalizability of A goes like this. Assume that
C−1AC = D is a diagonal matrix.

1 D 6= 0, since CDC−1 = A 6= 0.
2 D2 = 0, since D2 = (C−1AC)2 = C−1A2C = C−10C = 0.

But no diagonal matrix can satisfy both D 6= 0 and D2 = 0.
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A ∈ Mn×n(F). A necessary and
sufficient condition for A to be diagonalizable over F is that every root λ of
χA(λ) belongs to F and multgeom(λ) = multalg(λ) for each λ.

Remark. If the only obstacle to diagonalizability is that the roots of χA(λ) do
not belong to F, then extend F to some larger field (like the algebraic closure
F ⊇ F). If, now, multgeom(λ) = multalg(λ) for each root λ of χA(λ) in F, one
can diagonalize A over F.
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The Cayley-Hamilton Theorem and minpolyA,F(λ)

Cayley-Hamilton Theorem. If A ∈ Mn×n(F), then A “satisfies” χA(λ).
(χA(A) = 0.)

Example. If A =

[
0 −1
1 0

]
∈ M2×2(R), then χA(λ) = λ2 + 1.

Observe

χA(A) =

[
0 −1
1 0

]2

+ I =

[
−1 0
0 −1

]
+

[
1 0
0 1

]
=

[
0 0
0 0

]
= 0.

Definition. If A ∈ Mn×n(F), then the minimal polynomial of A over F,
written minpolyA,F(λ), is the monic polynomial of least degree that is
satisfied by A.

It follows from the Cayley-Hamilton Theorem that minpolyA,F(λ) divides
χA(λ).
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Another nec. and suff. condition for diagonalizability

Theorem. Let F be any scalar field and let A ∈ Mn×n(F). A necessary and
sufficient condition for A to be diagonalizable over F is that minpolyA,F(λ) is
factors into distinct linear terms over F.
(minpolyA,F(λ) = (λ− r1)(λ− r2) · · · (λ− rk) with the roots ri distinct
members of F.)

Examples.

1 Recall that if A =
[

0 1
0 0

]
, then χA(λ) = λ2. minpolyA,F(λ) divides

χA(λ) = λ2, so minpolyA,F(λ) = λ2, λ, or 1. Since A 6= 0, the only
possibility is minpolyA,F(λ) = λ2. The roots of minpolyA,F(λ) = λ2 are
not distinct. The theorem yields nondiagonalizability.

2 Recall that if A =
[

0 −1
1 0

]
, then χA(λ) = λ2 + 1 = (λ− i)(λ+ i). The

theorem yields nondiagonalizability over R but diagonalizability over C.
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Some applications

See the “Topics” sections at the end of Chapter 5.

1 Raising a matrix to a power.

2 Solving a linear recurrence.

3 Solving discrete dynamical system.

4 Google page rank.
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Solving a linear recurrence

One of the simplest linear recurrences is an+1 = 2an, a0 = 1. The unique
solution is an = 2n. (Prove this by induction.)

A famous (more complicated) recurrence is the Fibonacci recurrence:

Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1.

Small values of the sequence (OEIS A000045):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

We may express the recursion as follows.[
1 1
1 0

] [
Fn

Fn−1

]
=

[
Fn+1
Fn

]
,

[
F1
F0

]
=

[
1
0

]
.

[
1 1
1 0

]k [1
0

]
=

[
Fk+1
Fk

]
.
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The Binet formula

The matrix F =

[
1 1
1 0

]
has characteristic polynomial

χF (λ) = λ2 − tr(F) + det(F) = λ2 − λ− 1. The e-values are
λ1 = 1+

√
5

2 ≈ 1.618 and λ2 = 1−
√

5
2 ≈ −.618 = −1

λ1
.

The corresponding e-vectors are v1 =

[
λ1
1

]
and v2 =

[
λ2
1

]
.

[
1
0

]
= 1

λ1−λ2
v1 − 1

λ1−λ2
v2, so

[
1 1
1 0

]k [1
0

]
=

λk
1

λ1−λ2
v1 −

λk
2

λ1−λ2
v2, so

Fk =
λk

1
λ1 − λ2

−
λk

2
λ1 − λ2

=
1√
5

(
1 +
√

5
2

)k

− 1√
5

(
1−
√

5
2

)k

︸ ︷︷ ︸
Binet formula

.
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