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Definition. Let 7: V — V be a linear transformation from an [F-space to
itself. (We call T an endomorphism of V.) A vector v # 0 is an eigenvector
forTif T(v) =X-v.

We think of an eigenvector as a vector that points in the direction of some
“axis” for 7.

We call v a A-eigenvector for 7. Since v # 0, A is uniquely determined by v.

If V is finite dimensional, with ordered basis (by, ..., b,), then it is possible
to write 7' in matrix form so that [T(x)|g = A - [x|g for A = g[T]. In this
case we may refer to eigenvectors for the matrix A.
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Diagonalization

Theorem. Let A be the matrix for an endomorphism 7', written in a basis
B = (by,...,b,). Ais a diagonal matrix iff B consists of e-vectors for A.
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Diagonalization

Theorem. Let A be the matrix for an endomorphism 7', written in a basis
B = (by,...,b,). A is a diagonal matrix iff B consists of e-vectors for A. In

fact,
A=3g[Tlg =[T(b1)]s- [T(bs)ls]

— [\ Bils - - bl

A1 O 0
0 X 0
= = A
0
0 O An
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Suppose we are given \.

Av=X-v iff (A—AN)v=0

iff v € null(A — ).

The space V) := null(A — \) is called the \-eigenspace for A. Its nonzero
vectors are the A-eigenvectors.

Note. If A # p, then Vy NV, = {0}. (A =lambda, p = mu)
To see this, choose v e Vy NV,
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Finding the \-eigenvectors

Suppose we are given \.

Av=X-v iff (A—AN)v=0

iff v € null(A — ).

The space V) := null(A — \) is called the \-eigenspace for A. Its nonzero
vectors are the A-eigenvectors.

Note. If A # p, then Vy NV, = {0}. (A =lambda, p = mu)
To see this, choose v e Vy NV,
AV = AV = puv,s0 Av=puv,s0 (A — p)v=0,s0v=0.
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Find the characteristic polynomial, e-values, e-spaces of A = [3 4

} , and
then diagonalize A (if possible).
Stage 1. (Find the characteristic polynomial)

Ya(\) = det(M — A) = det ()J— B i]) :det({)\__; A_—24D — N _sa—2.

Stage 2. (Find the e-values)
A= 3y3

A= 3B N, =528

Stage 3. (Find the e-spaces)
V)\l = null()\ll —A).

1
M-1 =2 S B L
_ +Vv/33
[ -3 Al _4} [ -3 —3% V3| 3r+R, |0 0

4 2 2 4
v, = {Hi/ﬁ} = |:>\111:| . V= {Azll] = {3{373] V), = span{v;}.
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An example, 2

Stage 4. (Change basis from B = (vi,vy) to £ = (e}, ;)

C=cldla =18 = v =[5 7]

Stage 5. (Diagonalization)
0

AC = Alvy vp| = |Av — A
[vi vo] = [AVi Ava] = [Arvi dava] = [vi V)] [01 )\j A
B A = i ] _ 1 A )\1 0
[ ]B B[ld]g A S[Id]B =C 'AC=A= {0 /\2:|
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An application
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An application

1 2 100
3 4| -
If CT'TAC = A, then A = CAC™!, 50 A% = (CAC™1)!0 =

= (CAC ) (CACT")(CAC™") - (CACT!) = C(A')C™!, and

Find [

00
Ao _ [A 0 R YA
0 X\ 0 Ao
100
1 2],
Answer. [3 4] is
3 1 3
Sm sl (e o VR ()
B L S AR D
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Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric

multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4.
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Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric

multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multag(A) for this number.
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Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric
multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multyg(A) for this number. The
geometric multiplicity of )\ is the dimension of V.
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A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric
multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multyg(A) for this number. The
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number.
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Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric
multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multyg(A) for this number. The
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number.
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Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric
multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multyg(A) for this number. The
geometric multiplicity of A is the dimension of V. I write multgeom () for this
number.

Assume that C~'AC = D is diagonal. x4(\) = xp()), so A and D have the
same algebraic multiplicity.
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Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric
multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multyg(A) for this number. The
geometric multiplicity of A is the dimension of V. I write multgeom () for this
number.

Assume that C~'AC = D is diagonal. x4(\) = xp()), so A and D have the
same algebraic multiplicity. C: V) p — V) 4 is an isomorphism, and A and D
have the same geometric multiplicity.
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What could go wrong?

Two things can go wrong in an attempt to diagonalize a matrix A € M, x,(F).

@ The scalar field IF may not contain all of the e-values of A.

Assume that C~!AC = D is diagonal. v is a A-eigenvector for A iff C~'vis a
A-eigenvector for D. Thus if A is diagonalizable over F, all e-values must lie in
F.

@ The algebraic multiplicity of some e-value A\ may exceed the geometric
multiplicity of .

Let A be an e-value for some matrix A. The algebraic multiplicity of )\ is the
multiplicity of A as a root of x4. I write multyg(A) for this number. The
geometric multiplicity of A is the dimension of V. I write multgeom () for this
number.

Assume that C~'AC = D is diagonal. x4(\) = xp()), so A and D have the
same algebraic multiplicity. C: V) p — V) 4 is an isomorphism, and A and D
have the same geometric multiplicity. The algebraic and geometric multiplicity
of A in D are equal, so the same must be true for A.

Eigenvectors, eigenvalues, characteristic equation, diagonalization10/ 1
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IfA = [(1) _01} € My«»(R), where R is our scalar field, then
A1 5
Xxa(A) = det(NM — A) = det( 1 ) =X+ 1.
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IfA = [(1) _01} € My«»(R), where R is our scalar field, then
A1 5
Xxa(A) = det(NM — A) = det( 1 ) =X+ 1.

This polynomial has no real roots. Hence A has no e-values in the scalar field.
This blocks A from being diagonalizable over R.
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IfA = [(1) _01} € My«»(R), where R is our scalar field, then
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This polynomial has no real roots. Hence A has no e-values in the scalar field.
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IfA = [(1) _01} € My«»(R), where R is our scalar field, then
A1 5
Xxa(A) = det(NM — A) = det( 1 ) =X+ 1.

This polynomial has no real roots. Hence A has no e-values in the scalar field.
This blocks A from being diagonalizable over R.

Are we stuck? Not completely. Extend the scalar field R to the larger
(algebraically closed) field C and work there.
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IfA = [(1) _01} € My«»(R), where R is our scalar field, then
A1 5
Xxa(A) = det(NM — A) = det( 1 ) =X+ 1.

This polynomial has no real roots. Hence A has no e-values in the scalar field.
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(algebraically closed) field C and work there. E-values are +i, —i.
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Example for Problem 1.

IfA = [(1) _01} € My«>(R), where R is our scalar field, then
A1 5
Xxa(A) = det(NM — A) = det( 1 ) =X+ 1.

This polynomial has no real roots. Hence A has no e-values in the scalar field.
This blocks A from being diagonalizable over R.

Are we stuck? Not completely. Extend the scalar field R to the larger
(algebraically closed) field C and work there. E-values are +i, —i. Basis of

e-vectors is B = <|:i:| , |:_1l:| > fC = [B], then C_IAC = |:(l) —(l):| .
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Example. Let A = [O 0].
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Example. Let A = [O 0]. xa(A) = det( [0 A\ }) =A%

xa(A) = A? has a double root, A = 0.
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Example for Problem 2.

[0 1 B A=l o
Example. Let A = [O 0]. xa(A) = det( [0 A\ }) =A%

x4(A) = A? has a double root, A = 0. multyg(0) = 2.
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Example. Let A = [8 (1)] xa(\) = det( [3 _1}) =\

x4(X) = A? has a double root, A = 0. multyq(0) = 2. V) = span ! ,
9 0
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Example. Let A = [8 (1)] xa(\) = det( [3 _1}) =\

x4(X) = A? has a double root, A = 0. multyq(0) = 2. V) = span ! , SO
9 0

multgeom(o) =1.
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Example. Let A = [8 (1)] xa(\) = det( [g _1}) =\

xa(\) = A\? has a double root, A = 0. multyg(0) = 2. V) = span <[(1)] )’ S0
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Example. Let A = [8 (1)] xa(\) = det( [g _1}) =\

xa(\) = A\? has a double root, A = 0. multyg(0) = 2. V) = span <[(1)] )’ S0

multgeom(0) = 1. The fact that multgeom(0) < multyg(0) implies that A
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multgeom(0) = 1. The fact that multgeom(0) < multyg(0) implies that A
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Example. Let A = [8 (1)] xa(\) = det( [g _1}) =\

xa(\) = A\? has a double root, A = 0. multyg(0) = 2. V) = span <[(1)] )’ S0

multgeom(0) = 1. The fact that multgeom(0) < multyg(0) implies that A
cannot be diagonalized.

An easy proof of the nondiagonalizability of A goes like this. Assume that
C~'AC = D is a diagonal matrix.

@ D+#0,since CDC™' =A #0.

@ D? =0, since D* = (C'AC)?
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Example for Problem 2.

Example. Let A = [8 (1)] xa(\) = det( [g _1}) =\

xa(\) = A\? has a double root, A = 0. multyg(0) = 2. V) = span <[(1)] )’ 50

multgeom(0) = 1. The fact that multgeom(0) < multyg(0) implies that A
cannot be diagonalized.

An easy proof of the nondiagonalizability of A goes like this. Assume that
C~'AC = D is a diagonal matrix.

@ D+#0,since CDC™' =A #0.

@ D? = 0,since D> = (C7'AC)? = C7'A%C
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Example. Let A = [8 (1)] xa(\) = det( [g _1}) =\

xa(\) = A\? has a double root, A = 0. multyg(0) = 2. V) = span <[(1)] )’ 50

multgeom(0) = 1. The fact that multgeom(0) < multyg(0) implies that A
cannot be diagonalized.

An easy proof of the nondiagonalizability of A goes like this. Assume that
C~'AC = D is a diagonal matrix.

@ D+#0,since CDC™' =A #0.

@ D? =0,since D* = (C'AC)? = C'A’2C=C"'0C =0.
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Example for Problem 2.

Example. Let A = [8 (1)] xa(\) = det( [g _1}) =\

xa(\) = A\? has a double root, A = 0. multyg(0) = 2. V) = span <[(1)] )’ 50

multgeom(0) = 1. The fact that multgeom(0) < multyg(0) implies that A
cannot be diagonalized.

An easy proof of the nondiagonalizability of A goes like this. Assume that
C~'AC = D is a diagonal matrix.

@ D+#0,since CDC™' =A #0.

@ D? =0,since D> = (C7'AC)? = C7'A>’C =C7'0C = 0.
But no diagonal matrix can satisfy both D # 0 and D* = 0.

Eigenvectors, eigenvalues, characteristic equation, diagonalization12/ 1
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A € M, (F).
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Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over F is that every root A of
xa(A) belongs to F
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over F is that every root A of
Xa(A) belongs to F and multgeom(A) = multyg(A) for each .
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over F is that every root A of
Xa(A) belongs to F and multgeom(A) = multyg(A) for each .

Remark. If the only obstacle to diagonalizability is that the roots of x4(\) do
not belong to IF,
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over F is that every root A of
Xa(A) belongs to F and multgeom(A) = multyg(A) for each .

Remark. If the only obstacle to diagonalizability is that the roots of x4(\) do
not belong to IF, then extend I to some larger field (like the algebraic closure
FDO).
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Necessary and sufficient condition for diagonalizability

Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over F is that every root A of
Xa(A) belongs to F and multgeom(A) = multyg(A) for each .

Remark. If the only obstacle to diagonalizability is that the roots of x4(\) do
not belong to IF, then extend I to some larger field (like the algebraic closure
F D F). If, now, multgeom(A) = multgg(X) for each root A of x4(}) in I, one
can diagonalize A over F.
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Cayley-Hamilton Theorem.
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,,.,(F), then A “satisfies” x4 ().

Eigenvectors, eigenvalues, characteristic equation, diagonalization14/ 1



The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,,.,(F), then A “satisfies” x4 ().
(xa(A) =0.)
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,,.,(F), then A “satisfies” x4 ().
(xa(A) =0.)

0

1 _01] S szz(R), then XA(/\) = )\2 + 1.

Example. If A = [
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,,.,(F), then A “satisfies” x4 ().
(xa(A) =0.)

0

1 _01] S szz(R), then XA(/\) = )\2 + 1.

Example. If A = [

Observe

S i R P P R R
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,.,(IF), then A “satisfies” x4 ().
(xa(4) =0)

0

Example. If A = [ |

_01] S szz(R), then XA(/\) = )\2 + 1.

Observe
2
0 -1 1 0 1 0] [0 0
XA(A)_[I o] “_[0 —1]*[0 1}_[0 0]_0.

Definition. If A € M, »,(F), then the minimal polynomial of A over F,
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,.,(IF), then A “satisfies” x4 ().
(xa(4) =0)
0

Example. If A = [ |

_01] S szz(R), then XA(/\) = )\2 + 1.

Observe
2
0 -1 1 0 1 0] [0 0
XA(A)_[I o] “_[0 —1]*[0 1}_[0 0]_0.

Definition. If A € M, »,(F), then the minimal polynomial of A over F,
written minpoly, x(\),
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,.,(IF), then A “satisfies” x4 ().
(xa(4) =0)

0

Example. If A = [ |

_01] S szz(R), then XA(/\) = )\2 + 1.

Observe
2
0 -1 1 0 1 0] [0 0
XA(A)_[I o] “_[0 —1]*[0 1}_[0 0]_0.

Definition. If A € M, »,(F), then the minimal polynomial of A over F,
written minpoly A,]F()‘)’ is the monic polynomial of least degree that is
satisfied by A.
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The Cayley-Hamilton Theorem and minpoly , z())

Cayley-Hamilton Theorem. If A € M,,.,(IF), then A “satisfies” x4 ().
(xa(4) =0)
0

Example. If A = [ |

_01] S szz(R), then XA(/\) = )\2 + 1.

Observe
2
0 -1 1 0 1 0] [0 0
XA(A)_[I o] “_[0 —1]*[0 1}_[0 0]_0.

Definition. If A € M, »,(F), then the minimal polynomial of A over F,
written minpoly A,]F()‘)’ is the monic polynomial of least degree that is
satisfied by A.

It follows from the Cayley-Hamilton Theorem that minpoly, x()) divides
Xa(A).
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Another nec. and suff. condition for diagonalizability

Theorem. Let F be any scalar field and let A € M,,»,(F). A necessary and
sufficient condition for A to be diagonalizable over I is that minpoly, y()) is
factors into distinct linear terms over F.

(minpoly 4 g(A) = (A — r1)(A —r2) - - - (A — ri) with the roots r; distinct
members of IF.)

Examples.

@ Recall that if A = [8 (‘)},then xa(A) = A2 minpoly, () divides
Xa(A) = A2, so minpoly, p(A) = A%, X, or 1. Since A # 0, the only
possibility is minpoly, () = A*. The roots of minpoly, z(A) = \? are
not distinct. The theorem yields nondiagonalizability.

@ Recall that if A = [‘f _01] ,then ya(A) = A2+ 1 = (A — i)(A +i). The
theorem yields nondiagonalizability over R but diagonalizability over C.
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See the “Topics” sections at the end of Chapter 5.
@ Raising a matrix to a power.
@ Solving a linear recurrence.
© Solving discrete dynamical system.

Q Google page rank.
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One of the simplest linear recurrences is a,+; = 2a,, ag = 1. The unique
solution is a,, = 2". (Prove this by induction.)

A famous (more complicated) recurrence is the Fibonacci recurrence:
Fn+1:Fn+Fn—17 F0:07 Fr=1

Small values of the sequence (OEIS A000045):

0,1, 1,2 3,5, 8, 13, 21, 34, 55, 89, 144,....

We may express the recursion as follows.
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The Binet formula

The matrix F = B (1)] has characteristic polynomial

XF(A) = A2 —tr(F) +det(F) = A2 —A— 1.
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The matrix F = B (1)] has characteristic polynomial
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The matrix F = B (1)] has characteristic polynomial
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The Binet formula

The matrix F = B (1)] has characteristic polynomial
xFA) = A2 —tr(F) + det(]-") A2 — X\ — 1. The e-values are
A =155~ 1618and Ay = 155 ~ — 618 = 5L
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Binet formula

The corresponding e-vectors are v| = [)\11] and v, = [)\2} .
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