Solutions to HW 6.

1. Show that f: N x N — N: (m,n) — 2™(2n + 1) — 1 is a bijection. (This shows that
IN x N| = |N| using a different argument than the one given in class.)

(f is injective) If f(m,n) = f(p,q), then 2™ (2n+1)—1 = 2P(2g+1)—1, or 2™ (2n+1) = 2P(2¢+1)
(a nonzero natural number). By uniqueness of prime factorizations, every nonzero natural number
is expressible in a unique way as a product of a power of 2 and an odd number, hence 2™ = 2P and
2n+1 = 2g+ 1. From 2™ = 2P we derive m = p by unique factorization, and from 2n+1 = 2¢+1
we derive 2n = 2q, and then n = g with some arithmetic. This shows that f(m,n) = f(p, ¢) implies
(m,n) = (p,q).

(f is surjective) If k € N, then we can solve 2*(2y + 1) — 1 = k for z,y € N. Simply write this
as as 2(2y + 1) = k + 1, then choose x so that 2% is the exact power of 2 that divides k£ + 1 and
choose y so that 2y + 1 is the odd number that remains after dividing k£ 4+ 1 by 2*. The statement
that 2¥(2y + 1) — 1 = k is solvable for x,y € N is exactly what it means for f to be surjective.

2. Show that if |X| = |Y], then [P(X)| = [P(Y)].

I will write the solution in a general form below, but first let me explain the idea of the solution
in small example. Let X = {0,1} and Y = {a,b}. Let f: X — Y be the bijection 0 — a,1 — b.
Think of f as “renaming the elements 0, 1 using a,b”. To prove that |P(X)| = |P(Y)| we need to
establish that there is a bijection f: P(X) — P(Y). Written out more fully, we need to establish
that there is a bijection

F: {040}, {1}, {0, 13} — {0, {a}, {0}, {a, b}}.
The idea is to take f to be the function that “renames inside the braces”. That is f(0) = 0,
FH{0}) = {a}, fF{1}) = {b}, f({0,1}) = {a,b}. So, the idea f({0,1}) = {f(0), f(1)} may be
expressed as “renaming a set with f means renaming the elements inside the set with f”.

Let’s write this down for general X and Y. Since |X| = |V, there is a bijection f: X — V.
Let g: Y — X be the inverse of f. Define functions f: P(X) — P(Y) by the rule f(S) = {f(z) €
Y|zeS}and g: P(Y) — P(X) by the rule g(T) = {g(y) € X | y € T}. Tt is not hard to see that
g is the inverse of f, as follows:

Gof(S)=g{f(x)eY|xeSh) ={gof(x)e X |zeS}={reX|zeSt=5

for any S € P(X), and a similar argument shows that fo g(T) =T for any T € P(Y).
Since f: P(X) — P(Y) is invertible, it is a bijection, hence |P(X)| = |P(Y)|.

3. Let Eq(N) be the set of equivalence relations on N. Show that |P(N)| < |[Eq(N)| < |P(N x
N)|. Use Problem 2 to conclude that |[Eq(N)| = |P(N)].

Let N be the set of nonzero natural numbers. According to the “Laws of Successor” (Feb 19
handout “arithmetic.pdf”), the successor function S: N — NT is a bijection, so |[N| = |[NT|. B
Problem 2, |P(N)| = |P(NT)|.

Now we define a function f: P(N*1) — Eq(N) by defining f(S) to equal the equivalence relation
on N with one equivalence class equal to SU{0} and all other equivalence classes equal to singletons.
That is, for S € P(N1), define f(S) = (SU{0})2U {{(n,n)} | n € N} The function f is injective,
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since if S,T € P(NT) and f(S) = f(T) = E, then the E-equivalence class containing 0 is SU{0} =
T U{0}; since both S and T" consist of nonzero elements, S = T. Altogether this shows that

(1) [P(N)| = [P(NT)| < [Eq(N)|.

Next, every equivalence relation on N is a binary relation on N, hence is a subset of N x N. This
means that Eq(N) C P(N x N), hence |Eq(N)| < |P(N x N)|. Since |[N x N| = |N|, we derive from
Problem 2 that

(2) [Eq(N)[ < [P(N x N)| = [P(N)].

Combining (1) and (2) yields |P(N)| < |Eq(N)| < |P(N)|, so |Eq(N)| = |P(N)| by the Cantor-
Bernstein-Shréder Theorem.



