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Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition.

(Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)

Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn.

The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Definition

Definition. (Slightly different than Chap 4, Section 1.2, Defn 2.1.)
Let V = Fn. The determinant is an n-ary scalar-valued function

D : V× · · · × V→ F

that is

multilinear,

alternating, and

normalized so that D(e1, . . . , en) = 1.

Since D accepts n column vectors of length n, one may view D as a function
D : Mn×n(F)→ F.

For a1, . . . , an ∈ V, may write D(a1, . . . , an) or D ([a1 · · · an]) or
det ([a1 · · · an]) or |a1 · · · an| for the determinant.

The Determinant 2 / 8



Multilinear functions are determined by behavior on a basis

Example. Consider a bilinear function B : F3 →W. We want to evaluate

B

a
c
e

 ,
b

d
f

. Write

a
c
e

 = a

1
0
0

+ c

0
1
0

+ e

0
0
1

 = a e1 + c e2 + e e3. Hence

B

a
c
e

 ,
b

d
f

 = a B

e1,

b
d
f

+ c B

e2,

b
d
f

+ e B

e3,

b
d
f


= ab B (e1, e1) + ad B (e1, e2) + af B (e1, e3)+
+cb B (e2, e1) + cd B (e2, e2) + cf B (e2, e3)+
+eb B (e3, e1) + ed B (e3, e2) + ef B (e3, e3) .

Any B defined by the blue formula, with B(ei, ej) ∈W chosen arbitrarily, will be
bilinear.
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Alternating multilinear functions are more determined

Recall that a multilinear function is alternating is it returns the value 0 whenever two
inputs are equal.
Recall also that any alternating multilinear function is antisymmetric.

If B(x, y) is alternating and bilinear, we can simplify the previous Example, since (for
example) B(e1, e1) = 0 and B(e2, e1) = −B(e1, e2). This yields

B

a
c
e

 ,
b

d
f

 = ab B (e1, e1) + ad B (e1, e2) + af B (e1, e3)+

+cb B (e2, e1) + cd B (e2, e2) + cf B (e2, e3)+
+eb B (e3, e1) + ed B (e3, e2) + ef B (e3, e3)

= (ad − cb)B (e1, e2) + (af − eb)B (e1, e3) + (cf − ed)B (e2, e3) .

We see that an alternating bilinear transformation is determined by its values B(ei, ej)

with i < j. (Similarly, an alternating trilinear transformation is determined by its
values B(ei, ej, ek) with i < j < k.)
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B

a
c
e

 ,
b

d
f
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Uniqueness of the determinant

It is not hard to see that an alternating, n-linear transformation on
n-dimensional space is determined by B(e1, e2, . . . , en).
This is the reason that there is a unique alternating n-linear scalar-valued
function D : Fn × · · · × Fn → F that is normalized by setting
D(e1, e2, . . . , en) = 1.

Example. (The determinant on F2)

D
([

a
c

]
,

[
b
d

])
= ab D (e1, e1) + ad D (e1, e2)+

+cb D (e2, e1) + cd D (e2, e2)

= (ad − cb)D (e1, e2)
= ad − cb.

We also write det

[
a b
c d

]
= ad − cb or

∣∣∣∣ a b
c d

∣∣∣∣ = ad − cb.
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The 3× 3-determinant

Example. (The determinant on F3)

D

a
d
g

 ,
b

e
h

 ,
c

f
i

 = (a sum of 27 terms)

= (aei + bfg + cdh− afh− bdi− ceg)D (e1, e2, e3)
= aei + bfg + cdh− afh− bdi− ceg.
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The permutation expansion of the determinant, I

A permutation of X = {1, 2, . . . , n} is a bijection π : X → X from X to itself.
A permutation that moves exactly two elements, and swaps those two, is called a
transposition.
Associated to a permutation, like π : {1, 2, 3} → {1, 2, 3} : 1 7→ 2, 2 7→ 3, 3 7→ 1, is
the corresponding permutation matrix:

Pπ =

[
0 0 1
1 0 0
0 1 0

]
.

This is the matrix P having the property P · ei = eπ(i). It permutes the standard basis
vectors the same way that π permutes X. Hence the columns of P are {e1, . . . , en} in
a permuted order. This implies that P has exactly one 1 in each row and column, and
the rest of the entries of P are 0. (This property characterizes permutation matrices.)

det

[
0 0 1
1 0 0
0 1 0

]
= (−1) det

[
1 0 0
0 0 1
0 1 0

]
= (−1)2 det

[
1 0 0
0 1 0
0 0 1

]
= (−1)2.
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The permutation expansion of the determinant, II

If a permutation π is the composition of k transpositions, then the sign of π is (−1)k.
If the sign is +1, then π is called even, and if the sign is −1, then π is called odd.

Fact: If π = τ1 ◦ · · · ◦ τk, each τi a transposition, then Pπ = Pτ1 · · ·Pτk .

It follows from the Fact that if a permutation π is the composition of k transpositions,
then Pπ can be transformed into the identity matrix with k column swaps. (And vice
versa!)

We therefore call a permutation matrix even if it can be transformed into the identity
matrix with an even number of column swaps, and odd if it can be transformed into
the identity matrix with an odd number of column swaps. With this definition,
detPπ = sign(π).

[Explain how to compute the Cauchy number.]

Fact: detPπ = (−1)Cauchy number(π).

Permutation expansion. If A = [aij], then

detA =
∑
π

sign(π)aπ(1)1 · · · aπ(n)n.
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versa!)

We therefore call a permutation matrix even if it can be transformed into the identity
matrix with an even number of column swaps, and odd if it can be transformed into
the identity matrix with an odd number of column swaps. With this definition,
detPπ = sign(π).

[Explain how to compute the Cauchy number.]

Fact: detPπ = (−1)Cauchy number(π).

Permutation expansion. If A = [aij], then

detA =
∑
π

sign(π)aπ(1)1 · · · aπ(n)n.
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