
Classification of F-vector spaces.

The main point of these notes is to establish that every F-vector space is determined up
to isomorphism by its dimension. That is, every F-vector space has a dimension, and any
two F-vector spaces of the same dimension are isomorphic.

Theorem 1. Every vector space has a basis.

Idea of proof. Enumerate a spanning set S ⊆ V using an ordinal number. (If you are not
given a spanning set, you can always take S = V, since V spans itself.) We have

v0, v1, v2, . . . , vω, vω+1, vω+2, . . . .

Using the algorithm described on page 5 of the slides “basis.pdf” from February 22, examine
the vectors in this list one at a time and delete those that depend on the set of vectors listed
earlier. When the process is complete, the set of undeleted vectors will be a basis. 2

Theorem 2. If V and W are F-spaces, then V ∼= W if and only if there exist bases B and
C for V and W respectively and a bijection f : B → C.

The proof of this theorem uses the Universal Mapping Property, which is proved later.

Proof. Assume that f : B → C is a bijection. By the Universal Mapping Property, there
exists a unique linear transformation f : V→W extending f . Similarly, there exists a unique
linear transformation f−1 : W → V extending f−1 : C → B. The compositions f−1 ◦ f and
f ◦ f−1 extend the identity functions f−1 ◦ f = idB and f ◦ f−1 = idC, so, by the uniqueness
of extensions, f−1 ◦ f = idV and f ◦ f−1 = idW. This proves that f and f−1 are inverse
isomorphisms between V and W.

Conversely, assume that g : V→W is an isomorphism. If B is a basis for V, then I claim
that C := g(B) is a basis for W and g restricts to be a bijection from B to C. To justify this
we need to show three things:

(1) The restriction g|B is a bijection from B to C.
It suffices to observe that g−1|C is the inverse of g|B. That is, g−1|C ◦ g|B(b) = b for

any b ∈ B and g|B ◦ g−1|C(c) = c for any c ∈ C.
(2) C spans W .

We argue that an arbitrarily chosen vector w ∈ W belongs to span(C). Write
v := g−1(w) in terms of the basis B as v =

∑
αibi, and then apply g to this equality:

w = g(v) =
∑
αig(bi) ∈ span(C).

(3) C is linearly independent.

If
∑
αici = 0, then

∑
αig
−1(ci) = g−1(

∑
αici) = 0, since g is 1-1, so αi = 0 for all

i, since g−1(ci) ∈ B and B is a basis.
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Next, let’s state and prove the Universal Mapping Property, which guarantees that every
linear transformation is determined by how it behaves on a basis.

Theorem 3. (Universal Mapping Property) Let V,W be F-vector spaces. Let B be a basis
for V, If f : B → W is any function, then f extends uniquely to a linear transformation
f : V→W.

Here, when we say that f “extends” f , we mean that the two functions agree wherever
f is defined (i.e. f(x) = f(x) whenever x ∈ domain(f) = B). When we say that f is the
“unique” extension of f to a linear transformation, we mean that f : V → W is a linear
transformation extending f and if T : V → W is any linear transformation extending f ,
then T = f (i.e. T (x) = f(x) for all x ∈ domain(f) = V).

Proof. Given f : B → W, there is at most one way to extend f to the linear combinations
of elements of B if the extension map must respect addition and scaling, and that is

f
(∑

αibi

)
:=
∑

f(αibi) =
∑

αif(bi) =
∑

αif(bi).

That is, if v =
∑
αibi ∈ span(B) = V, then f(v) is defined to equal

∑
αif(bi).

There are things we must check, namely

(1) f is a function from V to W.
(2) f extends f .
(3) f is linear.
(4) f is the unique linear transformation V→W that is an extension f .

Let’s check them.
For Item (1), given any v ∈ V there is a unique way to write v in the B-basis, say v =∑
αibi ∈ span(B) = V. Given this expression, we have defined f(v) to be

∑
αif(bi) ∈ W.

That is, for each v ∈ V, we have defined f(v) uniquely, so f is a function.
For Item (2), if v = b ∈ B, then the unique expression of v as a linear combination of

elements of B is v = b. We have defined f so that f(v) = f(b) = f(b) in this case.
For Item (3), suppose that u, v ∈ V and u =

∑
βjbj, v =

∑
αibi. Then u + v =∑

βjbj +
∑
αibi so f(u + v) =

∑
βjf(bj) +

∑
αif(bi) = f(u) + f(v). This proves that f

respects addition. If r ∈ F, then rv = r(
∑
αibi) =

∑
rαibi. Therefore f(ru) =

∑
rαif(bi) =

r
∑
αif(bi) = rf(u). This proves that f respects scaling. Thus, f is linear.

For Item (4), assume that T is any linear transformation from V to W that extends f .
Then, for v =

∑
αibi we must have T (v) = T (

∑
αibi) =

∑
αiT (bi) =

∑
αif(bi) = f(v), so

T agrees with f at each v ∈ V. This forces T = f . �


