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Cantor’s Theorem

Thm.

There is no surjective function f : A→ P(A).

In fact, if f : A→ P(A) is any function, then the Russell-type set

C = {x ∈ A | x /∈ f (x)}

is not in the image of f .

Proof. Assume that x ∈ A and f (x) = C. Then x ∈ f (x) iff x /∈ f (x), a
contradiction. 2

Cantor’s Theorem. For any set A, |A| < |P(A)|. Hence, if A is infinite, then
P(A) is uncountable.

Proof. By HW3, Problem 1, F : A→ P(A) : a 7→ {a} is injective, so
|A| ≤ |P(A)|. The theorem implies that |A| 6= |P(A)|, so |A| < |P(A)|. 2
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R is uncountable

Thm. |R| = |(0, 1)| = |P(N)|.

Define the characteristic function of a subset S ⊆ A to be the function

χS︸︷︷︸
chi sub S

: A→ {0, 1} : a 7→

{
1 if a ∈ S
0 else.

That is, χS is the function from A to {0, 1} whose support is S.

Idea of proof: Try to build bijections (or almost-bijections) between subsets of
N, characteristic functions of subsets of N, and base 2 expansions of real
numbers from (0, 1).
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Additional facts about infinite cardinality

Thm. (ZFC) Let A and B be nonempty sets with at least one of them infinite.

|A ∪ B| = |A× B| = max(|A|, |B|).
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