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IR 1s uncountable

Thm. [R| = [(0, 1) = [P(N)].

Define the characteristic function of a subset S C A to be the function

1 ifaes

xs :A—{0,1}:a—
~— 0 else.

chisub S

That is, xs is the function from A to {0, 1} whose support is S.

Idea of proof: Try to build bijections (or almost-bijections) between subsets of
N, characteristic functions of subsets of N, and base 2 expansions of real
numbers from (0, 1).
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Additional facts about infinite cardinality

Thm. (ZFC) Let A and B be nonempty sets with at least one of them infinite.

IAUB| = |A x B| = max(|A|, |B]).

Some uncountable sets 4/4



