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Finitely generated spaces

Definition. A subset G ⊆ V generates V if V = span(G). V is finitely
generated if it has a finite spanning set.

In these slides we explained why, if V is a finitely generated vector space,

(1) Any spanning subset contains a basis.

(2) Any independent subset can be enlarged to a basis.

(3) All bases have the same cardinality.
(This cardinality is called the dimension of V, written dim(V).)

(The same is true even if V is not finitely generated, but the proof in the
non-finitely generated case requires some background from set theory.)
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Dependence

Definition. A dependence relation among a set G of vectors is a linear combination
equal to the zero vector:

c1 · v1 + · · ·+ cn · vn = 0.

The dependence relation is trivial if c1 = · · · = cn = 0, and nontrivial otherwise.

Fact/Theorem. G satisfies a nontrivial dependence relation if and only if some vector
in G is a linear combination of the others. (Note: A⇔ B is equivalent to ¬A⇔ ¬B.)

Reason/Proof: Assume that c1 · v1 + · · ·+ cn · vn = 0 is nontrivial because some
ci 6= 0. Solve for vi:

vi = −(c1/ci)v1 − · · · − ̂ith term · · · − (cn/ci)vn,

so vi is a linear combination of vectors in G− {vi}.
Conversely, if v ∈ G and v = c1 · v1 + · · ·+ cn · vn, expresses v as a linear
combination of vectors in G− {v}, then c1 · v1 + · · ·+ cn · vn − 1 · v = 0 is a
nontrivial dependence relation among elements of G. 2

Every (f.g.) vector space has a basis 3 / 7
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Dependence, 2

Definition. Let V be a vector space. A vector v ∈ V depends on a subset
G ⊆ V if v ∈ span(G). (This means that G ∪ {v} satisfies a dependence
relation “involving” v; i.e., a dependence relation where the coefficient of v is
nonzero.)
A subset H ⊆ V depends on G if every vector in H depends on G. (This
means that H ⊆ span(G), which can be shown to be equivalent to
span(H) ⊆ span(G).)
If v does not depend on G, we say v is independent of G.

1 G is an independent set of vectors if and only if any v ∈ G is
independent of G− {v}.

2 v depends on G if and only if span(G ∪ {v}) = span(G).
3 If H depends on G and G depends on F, then H depends on F.

Every (f.g.) vector space has a basis 4 / 7
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means that H ⊆ span(G), which can be shown to be equivalent to
span(H) ⊆ span(G).)
If v does not depend on G, we say v is independent of G.

1 G is an independent set of vectors if and only if any v ∈ G is
independent of G− {v}.

2 v depends on G if and only if span(G ∪ {v}) = span(G).
3 If H depends on G and G depends on F, then H depends on F.

Every (f.g.) vector space has a basis 4 / 7



Dependence, 2

Definition. Let V be a vector space. A vector v ∈ V depends on a subset
G ⊆ V if v ∈ span(G). (This means that G ∪ {v} satisfies a dependence
relation “involving” v; i.e., a dependence relation where the coefficient of v is
nonzero.)
A subset H ⊆ V depends on G if every vector in H depends on G. (This
means that H ⊆ span(G), which can be shown to be equivalent to
span(H) ⊆ span(G).)
If v does not depend on G, we say v is independent of G.

1 G is an independent set of vectors if and only if any v ∈ G is
independent of G− {v}.

2 v depends on G if and only if span(G ∪ {v}) = span(G).
3 If H depends on G and G depends on F, then H depends on F.

Every (f.g.) vector space has a basis 4 / 7



Dependence, 2

Definition. Let V be a vector space. A vector v ∈ V depends on a subset
G ⊆ V if v ∈ span(G). (This means that G ∪ {v} satisfies a dependence
relation “involving” v; i.e., a dependence relation where the coefficient of v is
nonzero.)
A subset H ⊆ V depends on G if every vector in H depends on G. (This
means that H ⊆ span(G), which can be shown to be equivalent to
span(H) ⊆ span(G).)
If v does not depend on G, we say v is independent of G.

1 G is an independent set of vectors if and only if any v ∈ G is
independent of G− {v}.

2 v depends on G if and only if span(G ∪ {v}) = span(G).

3 If H depends on G and G depends on F, then H depends on F.

Every (f.g.) vector space has a basis 4 / 7



Dependence, 2

Definition. Let V be a vector space. A vector v ∈ V depends on a subset
G ⊆ V if v ∈ span(G). (This means that G ∪ {v} satisfies a dependence
relation “involving” v; i.e., a dependence relation where the coefficient of v is
nonzero.)
A subset H ⊆ V depends on G if every vector in H depends on G. (This
means that H ⊆ span(G), which can be shown to be equivalent to
span(H) ⊆ span(G).)
If v does not depend on G, we say v is independent of G.

1 G is an independent set of vectors if and only if any v ∈ G is
independent of G− {v}.

2 v depends on G if and only if span(G ∪ {v}) = span(G).
3 If H depends on G and G depends on F, then H depends on F.

Every (f.g.) vector space has a basis 4 / 7



Any (finite) spanning set contains a basis

Theorem. If G ⊆ V is finite, then there is an independent subset I ⊆ G such
that span(I) = span(G).

Proof. Enumerate G as v1, . . . , vn. Recursively construct sets Ik by

1 I0 = ∅, and
2 Ik+1 = Ik ∪ {vk+1} if vk+1 is independent of Ik, while Ik+1 = Ik if vk+1

depends on Ik.

To verify:

1 Each Ik is independent.
2 span(Ik) = span({v1, . . . , vk}).
3 I := In is an independent subset of G that spans the same subspace as G.

2
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Any independent subset can be enlarged to a basis

Theorem. If G ⊆ V is finite and I ⊆ G is independent, then there is an
independent subset S satisfying I ⊆ S ⊆ G and span(S) = span(G).

Proof. Enumerate G with the elements of I enumerated first:

v1, . . . , vk︸ ︷︷ ︸
∈I

, vk+1, . . . , vn︸ ︷︷ ︸
/∈I

.

Repeat the procedure of the last proof. You will end with a subset S satisfying
I ⊆ S ⊆ G and span(S) = span(G). 2

Every (f.g.) vector space has a basis 6 / 7
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All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma.

Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V.

Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.

2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.

2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary.

If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d.

All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7



All bases have the same cardinality

Steinitz Exchange Lemma. Assume that I = {u1, . . . ,um} ⊆ V, is
independent and S = {v1, . . . , vn} ⊆ V spans V. Then

1 m ≤ n.
2 After possibly reordering S, {u1, . . . ,um, vm+1, . . . , vn} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis 7 / 7


