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Finitely generated spaces

Definition. A subset G C V generates V if V = span(G). V is finitely
generated if it has a finite spanning set.
In these slides we explained why, if V is a finitely generated vector space,
(1) Any spanning subset contains a basis.
(2) Any independent subset can be enlarged to a basis.

(3) All bases have the same cardinality.
(This cardinality is called the dimension of V, written dim(V).)

(The same is true even if V is not finitely generated, but the proof in the
non-finitely generated case requires some background from set theory.)
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Definition. Let V be a vector space. A vector v € V depends on a subset

G C Vifv € span(G). (This means that G U {v} satisfies a dependence
relation “involving” v; i.e., a dependence relation where the coefficient of v is
nonzero.)

A subset H C V depends on G if every vector in H depends on G. (This
means that H C span(G), which can be shown to be equivalent to

span(H) C span(G).)

If v does not depend on G, we say v is independent of G.

@ G is an independent set of vectors if and only if any v € G is
independent of G — {v}.

@ v depends on G if and only if span(G U {v}) = span(G).
O If H depends on G and G depends on F, then H depends on F.
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Steinitz Exchange Lemma. Assume that / = {uj,...,u,} C V,is
independent and S = {vy,...,v,} C V spans V. Then
Q m<n.

@ After possibly reordering S, {uy, ..., Wy, Vi1, ..., V,} spans V.

Corollary. If V is finitely generated, then V has a finite basis and all bases
have the same cardinality, say d. All independent subsets of V have size at
most d, and all spanning subsets of V have size at least d.

Every (f.g.) vector space has a basis



